高中數(shù)學任意角和弧度制復習要點
高中數(shù)學任意角和弧度制復習要點
數(shù)學是研究現(xiàn)實世界空間形式和數(shù)量關(guān)系的一門科學。以下是學習啦小編為您整理的關(guān)于高中數(shù)學任意角和弧度制復習要點的相關(guān)資料,希望對您有所幫助。
高中數(shù)學任意角和弧度制復習要點梳理
1.任意角
(1)角的分類:
①按旋轉(zhuǎn)方向不同分為正角、負角、零角.
?、诎唇K邊位置不同分為象限角和軸線角.
(2)終邊相同的角:
終邊與角α相同的角可寫成α+k·360°(k∈Z).
(3)弧度制:
①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.
?、谝?guī)定:正角的弧度數(shù)為正數(shù),負角的弧度數(shù)為負數(shù),零角的弧度數(shù)為零,|α|=,l是以角α作為圓心角時所對圓弧的長,r為半徑.
?、塾?ldquo;弧度”做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關(guān),僅與角的大小有關(guān).
?、芑《扰c角度的換算:360°=2π弧度;180°=π弧度.
⑤弧長公式:l=|α|r,扇形面積公式:S扇形=lr=|α|r2.
2.任意角的三角函數(shù)
(1)任意角的三角函數(shù)定義:
設α是一個任意角,角α的終邊與單位圓交于點P(x,y),那么角α的正弦、余弦、正切分別是:sin α=y,cos α=x,tan α=,它們都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù).
(2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦.
3.三角函數(shù)線
設角α的頂點在坐標原點,始邊與x軸非負半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M.由三角函數(shù)的定義知,點P的坐標為(cos_α,sin_α),即P(cos_α,sin_α),其中cos α=OM,sin α=MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與α的終邊或其反向延長線相交于點T,則tan α=AT.我們把有向線段OM、MP、AT叫做α的余弦線、正弦線、正切線.
高中數(shù)學任意角和弧度制復習要點相關(guān)文章:
4.高一上學期數(shù)學必修內(nèi)容總結(jié)
5.高中數(shù)學必修4目錄 高中數(shù)學必修4教材目錄