高一數學勾股定理知識點總結
勾股定理是三角幾何中應用最為廣泛的公式,一定要牢牢掌握。以下是學習啦小編為您整理的關于高一數學勾股定理知識點總結的相關資料,希望對您有所幫助。
高一數學勾股定理知識點總結
一、勾股定理的證明方法
方法一:
作四個全等的直角三角形,設它們的兩條直角邊長分別為a、b ,斜邊長為c. 把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上. 過C作AC的延長線交DF于點P.
∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一個邊長為c的正方形.
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一個邊長為a的正方形.
同理,HPFG是一個邊長為b的正方形.
設多邊形GHCBE的面積為S,則
,
∴ BDPC的面積也為S,HPFG的面積也為S由此可推出:a^2+b^2=c^2
方法二
作兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形.
分別以CF,AE為邊長做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直線上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直線上,
所以a^2+b^2=c^2
二、勾股數的相關介紹
①觀察3,4,5;5,12,13;7,24,25;…發(fā)現這些勾股數都是奇數,且從3起就沒有間斷過。計算0.5(9-1),0.5(9+1)與0.5(25-1),0.5(25+1),并根據你發(fā)現的規(guī)律寫出分別能表示7,24,25的股和弦的算式。
②根據①的規(guī)律,用n的代數式來表示所有這些勾股數的勾、股、弦,合情猜想他們之間的兩種相等關系,并對其中一種猜想加以說明。
?、劾^續(xù)觀察4,3,5;6,8,10;8,15,17;…可以發(fā)現各組的第一個數都是偶數,且從4起也沒有間斷過,運用上述類似的探索方法,之間用m的代數式來表示它們的股合弦。 ]在一個三角形中,兩條邊的平方和等于另一條邊的平方,那么這個三角形就是直角三角形。
三、勾股定理的命題方向
命題1:以已知線段為邊,求作一等邊三角形。
命題2:求以已知點為端點,作一線段與已知線段相等。
命題3:已知大小兩線段,求在大線段上截取一線段與小線段相等。
命題4:兩三角形的兩邊及其夾角對應相等,則這兩個三角形全等。
命題5:等腰三角形兩底角相等。
高一數學勾股定理知識點總結相關文章:
1.勾股定理知識
5.怎樣證明勾股定理