六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高1必修一數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間: 淑航658 分享

  掌握好高一的數(shù)學(xué)知識(shí)點(diǎn),會(huì)讓你在考試中如魚(yú)得水。下面是學(xué)習(xí)啦小編為大家收集整理的高1必修一數(shù)學(xué)知識(shí)點(diǎn),相信這些文字對(duì)你會(huì)有所幫助的。

  高1必修一數(shù)學(xué)知識(shí)點(diǎn):冪函數(shù)

  定義:

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞浚笖?shù)為常量的函數(shù)稱(chēng)為冪函數(shù)。

  定義域和值域:

  當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

  性質(zhì):

  對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  高1必修一數(shù)學(xué)知識(shí)點(diǎn):二次函數(shù)

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像。

  可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。

  高1必修一數(shù)學(xué)知識(shí)點(diǎn):一次函數(shù)

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數(shù)。

  特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

  即:y=kx(k為常數(shù),k≠0)

  二、一次函數(shù)的性質(zhì):

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1.作法與圖形:通過(guò)如下3個(gè)步驟

  (1)列表;

  (2)描點(diǎn);

  (3)連線(xiàn),可以作出一次函數(shù)的圖像——一條直線(xiàn)。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

  2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

  3.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當(dāng)k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。

  當(dāng)b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當(dāng)b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當(dāng)b<0時(shí),直線(xiàn)必通過(guò)三、四象限。

  特別地,當(dāng)b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當(dāng)k<0時(shí),直線(xiàn)只通過(guò)二、四象限。

374262