高一數(shù)學必修一函數(shù)知識點分析
高一數(shù)學必修一函數(shù)知識點分析
函數(shù)是高考的重點的內(nèi)容 ,是學生需要熟記并加以運用的知識點,下面是學習啦小編給大家?guī)淼挠嘘P于高一數(shù)學的關于函數(shù)的知識點的介紹,希望能夠幫助到大家。
高一數(shù)學必修一函數(shù)知識點
1、函數(shù)定義域、值域求法綜合
2.、函數(shù)奇偶性與單調(diào)性問題的解題策略
3、恒成立問題的求解策略
4、反函數(shù)的幾種題型及方法
5、二次函數(shù)根的問題——一題多解
&指數(shù)函數(shù)y=a^x
a^a*a^b=a^a+b(a>0,a、b屬于Q)
(a^a)^b=a^ab(a>0,a、b屬于Q)
(ab)^a=a^a*b^a(a>0,a、b屬于Q)
指數(shù)函數(shù)對稱規(guī)律:
1、函數(shù)y=a^x與y=a^-x關于y軸對稱
2、函數(shù)y=a^x與y=-a^x關于x軸對稱
3、函數(shù)y=a^x與y=-a^-x關于坐標原點對稱
冪函數(shù)y=x^a(a屬于R)
1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);
(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;
(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.
方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。
即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
1 (代數(shù)法)求方程的實數(shù)根;
2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
高一數(shù)學集合與函數(shù)概念的知識點
一.知識歸納:
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
?、诩现械脑鼐哂写_定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
?、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N*
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
?、谌?, ,則 ;
?、廴?且 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關子集的幾個等價關系
?、貯∩B=A A B;②A∪B=B A B;③A B C uA C uB;
?、蹵∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集運算的性質(zhì)
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
?、跜u (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數(shù):設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
重點難點教學:
1.正確理解映射的概念;
2.函數(shù)相等的兩個條件;
3.求函數(shù)的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數(shù)的概念和映射的定義;
2. 使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學生掌握函數(shù)的三種表示方法。
二.教學內(nèi)容:1.函數(shù)的定義
設A、B是兩個非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)()fx和它對應,那么稱:fAB為從集合A到集合B的一個函數(shù)(function),記作:
(),yfxxA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{()|}fxxA叫值域(range)。顯然,值域是集合B的子集。
注意:
?、?“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
?、诤瘮?shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x. 2.構(gòu)成函數(shù)的三要素 定義域、對應關系和值域。 3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區(qū)間及寫法:
設a、b是兩個實數(shù),且a
(1) 滿足不等式axb的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式axb的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法 ①解析法 ②列表法 ③圖像法
高一數(shù)學必修1函數(shù)及其表示(知識點)
高一數(shù)學必修一函數(shù)
1. 函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2. 復合函數(shù)的有關問題
(1)復合函數(shù)定義域求法:若已知 的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數(shù);
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);
5.方程k=f(x)有解 k∈D(D為f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);
(3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>0,a≠1,N>0 );
8. 判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對于反函數(shù),應掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;
12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題
13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
猜你感興趣:
2.高一數(shù)學必修一函數(shù)經(jīng)典題型復習