高一數(shù)學(xué)必修一集合與函數(shù)的概念
高一數(shù)學(xué)必修一集合與函數(shù)的概念
集合與函數(shù)都是高一的數(shù)學(xué)學(xué)習(xí)的知識點,需要學(xué)生學(xué)習(xí)和掌握,下面學(xué)習(xí)啦的小編將為大家?guī)黻P(guān)于集合與函數(shù)的概念的分析介紹,希望能夠幫助到大家。
高一數(shù)學(xué)必修一集合與函數(shù)概念介紹
第一章集合與函數(shù)概念
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。
把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。
(2)元素的互異性:一個給定集合中的元素是唯一的,不可重復(fù)的。
(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
?、賲^(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。
{xR|x-3>2},{x|x-3>2}
?、谡Z言描述法:例:{不是直角三角形的三角形}
③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。
4、集合的分類:
(1)有限集:含有有限個元素的集合
(2)無限集:含有無限個元素的集合
(3)空集:不含任何元素的集合
5、元素與集合的關(guān)系:
(1)元素在集合里,則元素屬于集合,即:aA
(2)元素不在集合里,則元素不屬于集合,即:a¢A
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+
整數(shù)集Z
有理數(shù)集Q
實數(shù)集R
6、集合間的基本關(guān)系
(1).“包含”關(guān)系(1)—子集
定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集。記作:(或BA)
注意:有兩種可能(1)A是B的一部分;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
(2).“包含”關(guān)系(2)—真子集
如果集合,但存在元素xB且x¢A,則集合A是集合B的真子集
如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)讀作A真含與B
(3).“相等”關(guān)系:A=B“元素相同則兩集合相等”
如果AB同時BA那么A=B
(4).不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
(5)集合的性質(zhì)
?、偃魏我粋€集合是它本身的子集。AA
②如果AB,BC,那么AC
?、廴绻鸄B且BC,那么AC
?、苡衝個元素的集合,含有2n個子集,2n-1個真子集
7、集合的運算
運算類型 交集 并集 補集
定義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}. 由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}). 全集:一般,若一個集合漢語我們所研究問題中這幾道的所有元素,我們就稱這個集合為全集,記作:U
設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作,
CSA=
韋恩圖示
性質(zhì) A∩A=A
A∩Φ=Φ
A∩B=BA
A∩BA
A∩BB AUA=A
AUΦ=A
AUB=BUA
AUBA
AUBB (CuA)∩(CuB)=Cu(AUB)
(CuA)U(CuB)=Cu(A∩B)
AU(CuA)=U
A∩(CuA)=Φ.
二、函數(shù)的概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.
(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
(2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
2.函數(shù)的三要素:定義域、值域、對應(yīng)法則
3.函數(shù)的表示方法:
(1)解析法:明確函數(shù)的定義域
(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。
(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。
4、函數(shù)圖象知識歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.
(2)畫法
A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。
(3)函數(shù)圖像平移變換的特點:
1)加左減右——————只對x
2)上減下加——————只對y
3)函數(shù)y=f(x)關(guān)于X軸對稱得函數(shù)y=-f(x)
4)函數(shù)y=f(x)關(guān)于Y軸對稱得函數(shù)y=f(-x)
5)函數(shù)y=f(x)關(guān)于原點對稱得函數(shù)y=-f(-x)
6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得
函數(shù)y=|f(x)|
7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱的圖像得函數(shù)f(|x|)
三、函數(shù)的基本性質(zhì)
1、函數(shù)解析式子的求法
(1)、函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.
(2)、求函數(shù)的解析式的主要方法有:
1)代入法:
2)待定系數(shù)法:
3)換元法:
4)拼湊法:
2.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.
3、相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));
②定義域一致(兩點必須同時具備)
4、區(qū)間的概念:
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
(3)區(qū)間的數(shù)軸表示
5、值域(先考慮其定義域)
(1)觀察法:直接觀察函數(shù)的圖像或函數(shù)的解析式來求函數(shù)的值域;
(2)反表示法:針對分式的類型,把Y關(guān)于X的函數(shù)關(guān)系式化成X關(guān)于Y的函數(shù)關(guān)系式,
由X的范圍類似求Y的范圍。
(3)配方法:針對二次函數(shù)的類型,根據(jù)二次函數(shù)圖像的性質(zhì)來確定函數(shù)的值域,
注意定義域的范圍。
(4)代換法(換元法):作變量代換,針對根式的題型,轉(zhuǎn)化成二次函數(shù)的類型。
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
(4)常用的分段函數(shù)有取整函數(shù)、符號函數(shù)、含絕對值的函數(shù)
7.映射
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
對于映射f:A→B來說,則應(yīng)滿足:
(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;
(3)不要求集合B中的每一個元素在集合A中都有原象。
注意:映射是針對自然界中的所有事物而言的,而函數(shù)僅僅是針對數(shù)字來說的。所以函數(shù)是映射,而映射不一定的函數(shù)
8、函數(shù)的單調(diào)性(局部性質(zhì))及最值
(1)、增減函數(shù)
1)設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當(dāng)x1
2)如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當(dāng)x1f(x2),
那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種
(2)、圖象的特點
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3)、函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
點擊下頁查看更多高一數(shù)學(xué)必修一集合測試題分析