高一數(shù)學(xué)關(guān)于集合的知識點分析
每個班年級學(xué)習(xí)的知識點是不一樣的,下面學(xué)習(xí)啦的小編將為大家?guī)砀咭恍┝?xí)的關(guān)于集合的知識點的介紹,希望能夠幫助到大家。
高一數(shù)學(xué)關(guān)于集合的知識點
集合
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
?注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大
括號內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實例:設(shè)A={x|x2
-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。A?A
?、谡孀蛹?如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)
?、廴绻鸄?B,B?C,那么A?C
?、苋绻鸄?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集
二·一般我們把不含任何元素的集合叫做空集。
集合的分類
(1)按元素屬性分類,如點集,數(shù)集。(2)按元素的個數(shù)多少,分為有/無限集
關(guān)于集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。
集合可以根據(jù)它含有的元素的個數(shù)分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N*;
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)
實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。)
1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.
無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.
2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。
例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”
而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為
{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},
大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}
它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。
例如:集合A={x∈R│x2-1=0}的特征是X2-1=0
高三數(shù)學(xué)三角函數(shù)公式
sinα=∠α的對邊/斜邊
cosα=∠α的鄰邊/斜邊
tanα=∠α的對邊/∠α的鄰邊
cotα=∠α的鄰邊/∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA²-SinA²=1-2SinA²=2CosA²-1
tan2A=(2tanA)/(1-tanA²)
(注:SinA²是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推導(dǎo)
sin3a=sin(2a+a)=sin2acosa+cos2asina
三角函數(shù)輔助角公式
Asinα+Bcosα=(A²+B²)’(1/2)sin(α+t),其中
sint=B/(A²+B²)’(1/2)
cost=A/(A²+B²)’(1/2)
tant=B/A
Asinα+Bcosα=(A²+B²)’(1/2)cos(α-t),tant=A/B
降冪公式
sin²(α)=(1-cos(2α))/2=versin(2α)/2
cos²(α)=(1+cos(2α))/2=covers(2α)/2
tan²(α)=(1-cos(2α))/(1+cos(2α))
三角函數(shù)推導(dǎo)公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=(sinα/2+cosα/2)²=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³a
cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosa
sin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)
cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
三角函數(shù)半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin²(a/2)=(1-cos(a))/2
cos²(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角函數(shù)三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
三角函數(shù)兩角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角函數(shù)和差化積
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
三角函數(shù)積化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
三角函數(shù)誘導(dǎo)公式
sin(-α)=-sinα
cos(-α)=cosα
tan(—a)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
誘導(dǎo)公式記背訣竅:奇變偶不變,符號看象限
萬能公式
sinα=2tan(α/2)/[1+tan’(α/2)]
cosα=[1-tan’(α/2)]/1+tan’(α/2)]
tanα=2tan(α/2)/[1-tan’(α/2)]
其它公式
(1)(sinα)²+(cosα)²=1
(2)1+(tanα)²=(secα)²
(3)1+(cotα)²=(cscα)²
證明下面兩式,只需將一式,左右同除(sinα)²,第二個除(cosα)²即可
(4)對于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:A+B=π-Ctan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得tanA+tanB+tanC=tanAtanBtanC
得證同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時,該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC
(8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
猜你感興趣:
1.高一數(shù)學(xué)集合大小定義的基本要求