七年級(jí)數(shù)學(xué)上冊(cè)、下冊(cè)重要知識(shí)點(diǎn)總結(jié)(2)
七年級(jí)數(shù)學(xué)上冊(cè)、下冊(cè)重要知識(shí)點(diǎn)總結(jié)
七年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn):第二章 相交線與平行線
一、知識(shí)框架
二、知識(shí)概念
1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。
2.對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。
3.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
5.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。
內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。
同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。
6.命題:判斷一件事情的語(yǔ)句叫命題。
7.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱(chēng)平移。
8.對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。
9.定理與性質(zhì)
對(duì)頂角的性質(zhì):對(duì)頂角相等。
10垂線的性質(zhì):
性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
11.平行公理:經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
12.平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。
13.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內(nèi)錯(cuò)角相等,兩直線平行。
判定3:同旁內(nèi)角相等,兩直線平行。
本章使學(xué)生了解在平面內(nèi)不重合的兩條直線相交與平行的兩種位置關(guān)系,研究了兩條直線相交時(shí)的形成的角的特征,兩條直線互相垂直所具有的特性,兩條直線平行的長(zhǎng)期共存條件和它所有的特征以及有關(guān)圖形平移變換的性質(zhì),利用平移設(shè)計(jì)一些優(yōu)美的圖案. 重點(diǎn):垂線和它的性質(zhì),平行線的判定方法和它的性質(zhì),平移和它的性質(zhì),以及這些的組織運(yùn)用. 難點(diǎn):探索平行線的條件和特征,平行線條件與特征的區(qū)別,運(yùn)用平移性質(zhì)探索圖形之間的平移關(guān)系,以及進(jìn)行圖案設(shè)計(jì)。
七年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn):第三章 平面直角坐標(biāo)系
一.知識(shí)框架
二.知識(shí)概念
1.有序數(shù)對(duì):有順序的兩個(gè)數(shù)a與b組成的數(shù)對(duì)叫做有序數(shù)對(duì),記做(a,b)
2.平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱(chēng)為x軸或橫軸;豎直的數(shù)軸稱(chēng)為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4.坐標(biāo):對(duì)于平面內(nèi)任一點(diǎn)P,過(guò)P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對(duì)應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。
5.象限:兩條坐標(biāo)軸把平面分成四個(gè)部分,右上部分叫第一象限,按逆時(shí)針?lè)较蛞淮谓械诙笙?、第三象限、第四象限。坐?biāo)軸上的點(diǎn)不在任何一個(gè)象限內(nèi)。
平面直角坐標(biāo)系是數(shù)軸由一維到二維的過(guò)渡,同時(shí)它又是學(xué)習(xí)函數(shù)的基礎(chǔ),起到承上啟下的作用。另外,平面直角坐標(biāo)系將平面內(nèi)的點(diǎn)與數(shù)結(jié)合起來(lái),體現(xiàn)了數(shù)形結(jié)合的思想。掌握本節(jié)內(nèi)容對(duì)以后學(xué)習(xí)和生活有著積極的意義。教師在講授本章內(nèi)容時(shí)應(yīng)多從實(shí)際情形出發(fā),通過(guò)對(duì)平面上的點(diǎn)的位置確定發(fā)展學(xué)生創(chuàng)新能力和應(yīng)用意識(shí)。
七年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn):第四章 三角形
一.知識(shí)框架
二.知識(shí)概念
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
6.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
8.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
9.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
10.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
12.公式與性質(zhì)
三角形的內(nèi)角和:三角形的內(nèi)角和為180°
三角形外角的性質(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
多邊形的外角和:多邊形的內(nèi)角和為360°。
多邊形對(duì)角線的條數(shù):(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形。
(2)n邊形共有 條對(duì)角線。
三角形是初中數(shù)學(xué)中幾何部分的基礎(chǔ)圖形,在學(xué)習(xí)過(guò)程中,教師應(yīng)該多鼓勵(lì)學(xué)生動(dòng)腦動(dòng)手,發(fā)現(xiàn)和探索其中的知識(shí)奧秘。注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾何思維能力。
>>>下一頁(yè)更多精彩“七年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)”