初三數(shù)學(xué)中考知識點(diǎn)
隨著考試的來臨,我們要做好萬全準(zhǔn)備。下面是學(xué)習(xí)啦小編為大家收集整理的初三數(shù)學(xué)中考知識點(diǎn),相信這些文字對你會有所幫助的。
初三數(shù)學(xué)中考知識點(diǎn)(一)
一次函數(shù)的定義
一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。
函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對應(yīng)規(guī)律。
解析式法:簡單明了,能夠準(zhǔn)確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個變量之間的函數(shù)關(guān)系。
一次函數(shù)的性質(zhì)
一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)
注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)
a)k不為0
b)x的指數(shù)是1
c)b取任意實(shí)數(shù)
確定函數(shù)定義域的方法
(1)關(guān)系式為整式時,函數(shù)定義域為全體實(shí)數(shù);
(2)關(guān)系式含有分式時,分式的分母不等于零;
(3)關(guān)系式含有二次根式時,被開放方數(shù)大于等于零;
(4)關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零;
(5)實(shí)際問題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。
用待定系數(shù)法確定函數(shù)解析式的一般步驟
(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式;
(2)將x、y的幾對值或圖像上的幾個點(diǎn)的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程
(3)解方程得出未知系數(shù)的值;
(4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式。
初三數(shù)學(xué)中考知識點(diǎn)(二)
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα。
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
初三數(shù)學(xué)中考知識點(diǎn)(三)
(1)必然事件是指一定能發(fā)生的事件,或者說發(fā)生的可能性是100%;
(2)不可能事件是指一定不能發(fā)生的事件;
(3)隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件;
(4)隨機(jī)事件的可能性
一般地,隨機(jī)事件發(fā)生的可能性是有大小的,不同的隨機(jī)事件發(fā)生的可能性的大小有可能不同。
(5)概率
一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)P附近,那么這個常數(shù)P就叫做事件A的概率,記為P(A)=P.
(6)可能性與概率的關(guān)系
事件發(fā)生的可能性越大,它的概率越接近于1,反之事件發(fā)生的可能性越小,則它的概率越接近0.