六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>初中學習方法>初三學習方法>九年級數(shù)學>

九年級上學期期末數(shù)學卷有答案

時間: 礎(chǔ)鴻1124 分享

  九年級數(shù)學期末考試中,做題時要仔細審題,善于思考,認真答題,發(fā)揮你最好的數(shù)學答題水平。以下是學習啦小編為你整理的九年級上學期期末數(shù)學卷,希望對大家有幫助!

  九年級上學期期末數(shù)學卷

  一、選擇題(本題共32分,每小題4分)下面各題均有四個選項,其中只有一個是符合題意的,請將所選答案前的字母填在相應(yīng)的表格內(nèi).

  1.如果 ,那么 的值是

  A. B. C. D.

  2.一元二次方程2x2-3x=4的二次項系數(shù)是

  A. 2 B. -3 C.4 D. -4

  3.在Rt△ABC中,∠C=90°,AB=13,AC=12,則sinB的值是

  A. B. C. D.

  4. 將拋物線 經(jīng)過怎樣的平移可得到拋物線

  A.先向左平移1個單位,再向上平移2個單位

  B.先向左平移1個單位,再向下平移2個單位

  C. 先向右平移1個單位,再向上平移2個單位

  D. 先向右平移1個單位,再向下平移2個單位

  5.若兩圓的半徑分別為4和3,圓心距為1,則這兩圓的位置關(guān)系是

  A.內(nèi)含 B.內(nèi)切 C.相交 D.外切

  6.在下列事件中,不可能事件為

  A.通常加熱到100℃時,水沸騰

  B.度量三角形內(nèi)角和,結(jié)果是180°

  C.拋擲兩枚硬幣,兩枚硬幣全部正面朝上

  D.在布袋中裝有兩個質(zhì)地相同的紅球,摸出一個白球

  7.如圖,邊長為1的菱形ABCD繞點A旋轉(zhuǎn),當B、C

  兩點恰好落在扇形AEF的弧EF上時,弧BC的長度等于

  A.     B. C.     D.

  8.如圖,點A、B、C、D為圓O的四等分點,動點P從圓心O出發(fā),沿線段OC-弧 -線段DO的路線作勻速運動.設(shè)運動時間為 秒,∠APB的度數(shù)為y度,則下列圖象中表示y與t的函數(shù)關(guān)系最恰當?shù)氖?/p>

  二、填空題(本題共16分,每小題4分)

  9. 已知兩個相似三角形的周長比是1:3,它們的面積比是 .

  10. 已知圓錐的底面直徑為4cm,其母線長為3cm,則它的側(cè)面積是 .

  11.已知P是⊙O外一點,PA切⊙O于A,PB切⊙O于B. 若PA=6,則PB=

  12.如圖,在由12個邊長都為1且有一個銳角為60°的小菱形組成

  的網(wǎng)格中,點P是其中的一個頂點,以點P為直角頂點作格點

  直角三角形(即頂點均在格點上的三角形),請你寫出所有可能

  的直角三角形斜邊的長___________________.

  三、解答題(本題共35分,每小題5分)

  13.

  解:

  14. 解方程:

  解:

  15.已知:如圖,若 ,且BD=2,AD=3,求BC的長。

  解:

  16.如圖,在直角坐標平面內(nèi), 為原點,點 的坐標為

  ,點 在第一象限內(nèi), , .

  求:(1)點 的坐標;(2) 的值.

  解:(1) (2)

  17.已知:如圖,AB是⊙O的直徑,CD是⊙O的弦, 且AB⊥CD,垂足為E,聯(lián)結(jié)OC, OC=5,CD=8,求BE的長;

  解:

  18. 已知二次函數(shù)y = x2 +4x +3.

  (1)用配方法將y = x2 +4x +3化成y = a (x - h) 2 + k的形式;

  (2)在平面直角坐標系中,畫出這個二次函數(shù)的圖象;

  (3)寫出當x為何值時,y>0.

  解:

  19. 如圖, 小明想測量某建筑物 的高,站在點 處,看建筑物的頂端 ,測得仰角為 ,再往建筑物方向前行 米到達點 處,看到其頂端 ,測得仰角為 ,求建筑物 的長( 結(jié)果精確到 , ).

  解:

  四、解答題(本題共15分,每題5分)

  20. 一個袋中有3張形狀大小完全相同的卡片,編號為1、2、3,先任取一張,再從剩下的兩張中任取一張 .請你用列舉法(畫樹狀圖或列表的方法)求取出的兩張卡片上的數(shù)字之和為5的概率.

  21. 已知:如圖,AB是⊙O的直徑,BC是弦,OD⊥BC于點F,交⊙O于點D,連接AD、CD,∠E=∠ADC.

  (1)求證:BE是⊙O的切線;

  (2)若BC=6,tanA = ,求⊙O的半徑.

  22. 如圖1,若將△AOB繞點O逆時針旋轉(zhuǎn)180°得到△COD,則△AOB≌△COD.此時,我們稱△AOB與△COD為“8字全等型”.借助“8字全等型”我們可以解決一些圖形的分割與拼接問題.例如:圖2中,△ABC是銳角三角形且AC>AB,點E為AC中點,F(xiàn)為BC上一點且BF≠FC(F不與B、C重合),沿EF將其剪開,得到的兩塊圖形恰能拼成一個梯形.

  請分別按下列要求用直線將圖2中的△ABC重新進行分割,畫出分割線及拼接后的圖形.

  (1)在圖3中將△ABC沿分割線剪開,使得到的兩塊圖形恰能拼成一個平行四邊形;

  (2在圖4中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的兩塊為直角三角形;

  (3在圖5中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的一塊為銳角三角形.

  五、解答題(本題共22分,第23題7分,第24題8分,第25題7分)

  23.已知關(guān)于x的一元二次方程 有兩個不等的實根,

  (1)求k的取值范圍;

  (2)若k取小于1的整數(shù),且此方程的解為整數(shù),則求出此方程的兩個整數(shù)根;

  (3)在(2)的條件下,二次函數(shù) 與x軸交于A、B兩點(A點在B點的左側(cè)),D點在此拋物線的對稱軸上,若 ,求D點的坐標。

  解:

  24.如圖:點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=α.將線段OC繞點

  C按順時針方向旋轉(zhuǎn)60°得到線段CD,連接OD、AD.

  (1) 求證:AD=BO

  (2) 當α=150°時,試判斷△AOD的形狀,并說明理由;

  (3) 探究:當α為多少度時(直接寫出答案),△AOD是等腰三角形?

  25.已知二次函數(shù) 的圖象與x軸交于點A(4,0)、點B,與y軸交于點C。

  (1)求此二次函數(shù)的解析式及點B的坐標;

  (2)點P從點A出發(fā)以每秒1個單位的速度沿線段AO向O點運動,到達點O后停止運動,過點P作PQ//AC交OC于點Q,將四邊形PQCA沿PQ翻折,得到四邊形 ,設(shè)點P的運動時間為t。

 ?、佼攖為何值時,點 恰好落在二次函數(shù) 的圖象的對稱軸上;

 ?、谠O(shè)四邊形 落在第一象限內(nèi)的圖形面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出當t為何值時S的值最大。

  九年級上學期期末數(shù)學卷答案

  一、選擇題(每小題4分,本題共32分)

  題號 1 2 3 4 5 6 7 8

  選項 D A B C B D C C

  二、填空題(每小題4分,本題共16分)

  題號 9 10 11 12

  答案 1:9

  6 ,2

  三、解答題(本題共35分,每小題5分)

  13. 解:

  = ----------------------------------- 3分

  = --------------------------------4分

  = (或 ).--------------------------------5分

  14. 解:(1)∵△=49.…………………………………………………… 3分

  ∴ .………………………………………5分

  15.∵△ABC∽△CBD…………………………………………3分

  ∴ ………………………………………………4分

  ∴ ……………………………………………………5分

  16.解:(1)如圖,作 ,垂足為 ,………………1分

  在 中, , ,

  .

  .……………………………… 2分

  點 的坐標為 .……………………3分

  (2) , , .

  在 中, , .……………………………… 4分

  .(得 不扣分)…………………………5分

  17.解: ∵AB為直徑,AB⊥CD,

  ∴∠AEC=90°,CE=DE. ……………………2分

  ∵CD=8,

  ∴ . ………………… 3分

  ∵OC=5,

  ∴OE= . …………4分

  ∴BE=OB-OE=5-3=2. …………………………………………………5分

  18.解:(1)

  .-------------------------2分

  (2)列表:

  x … -4 -3 -2 -1 0 …

  y … 3 0 -1 0 3 …

  圖象見圖1.------------------------------4分

  (3)x<-3或x>-1. ---------------------5分

  19.解:設(shè)CE=x

  在Rt△BCE中,

  …………………1分

  由勾股定理得: …………………2分

  ∵

  ∴

  ∴

  ∴ …………………3分

  ∴BE=EF=2x

  ∴EF=40

  ∴x=20 …………………4分

  ∴ …………………5分

  答:建筑物 的長為34.6m.

  四、解答題(本題共15分,每題5分)

  m+n 3 4 3 5 4 5

  或

  1 2 3

  1 (2,1) (3,1)

  2 (1,2) (3,2)

  3 (1,3) (2,3)

  …………………………….…………………………….3分

  注:畫出一種情況就可給3分

  P(數(shù)字之和為5)= = ……………………………………………5分

  21.(1)證明:∵OD⊥BC

  ∴∠E+∠FBE=90°

  ∵∠ADC=∠ABC,∠ADC=∠E

  ∴∠ABC=∠E …………………………………………1分

  ∴∠ABC+∠FBE=90°

  ∴BE與⊙O相切 ……………………………………………2分

  (2)解:∵半徑OD⊥BC

  ∴FC=BF=3 ………………………………………………3分

  在Rt△CFD中:設(shè)半徑OB=x,OF=x-2

  ………………………………………………5分

  五、解答題(本題共22分,第23題7分,第24題8分,第25題7分)

  23. (1)解:∵Δ=12+8k ……………………………………………………1分

  ∴方程有兩個不等實根

  ∴12+8k>0

  …………………………………………………………2分

  (2)∵k取小于1的整數(shù)

  ∴k=-1或0 ………………………………………………3分

  ∵方程的解為整數(shù)

  ∴k=-1 ………………………………………………4分

  ∴

  ……………………………………………5分

  (3) …………………………………………7分(一個答案1分)

  24. (1)∵等邊ΔABC

  ∴BC=AC,∠ACB=60°

  ∵OC繞點C按順時針方向旋轉(zhuǎn)60°

  ∴OC=CD,∠OCB=∠DCA

  ∴ΔBOC≌ΔADC ………………………………………………2分

  ∴AD=BO

  (2) ∵OC繞點C按順時針方向旋轉(zhuǎn)60°

  ∴ΔOCD是等邊三角形……………………………………………3分

  ∴∠ODC=60°

  ∵ΔBOC≌ΔADC

  ∴∠BOC=∠ADC=150°……………………………………………4分

  ∴∠ADC=90°…………………………………………………… 5分

  (3)α=110°,α=140°,α=125°……………………8分(一個答案1分)

  25.(1) …………………………………………1分

  …………………………………………………………2分

  (2)①t=1 ………………………………………………………………4分

  ②

  …………………………………………5分

  ………………………………6分

  當 時,S的面積最大…………………………………………7分

3753883