六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級(jí)數(shù)學(xué) > 2016哈爾濱中考數(shù)學(xué)知識(shí)點(diǎn)

2016哈爾濱中考數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間: 淑航658 分享

2016哈爾濱中考數(shù)學(xué)知識(shí)點(diǎn)

  對(duì)于中考數(shù)學(xué)知識(shí)點(diǎn)的掌握,有助于我們考出一個(gè)好成績(jī)。下面是學(xué)習(xí)啦小編收集整理的2016哈爾濱中考數(shù)學(xué)知識(shí)以供大家學(xué)習(xí)。

  2016哈爾濱中考數(shù)學(xué)知識(shí)(一)

  二次函數(shù)概念

  二次函數(shù)的概念:一般地,形如ax^2+bx+c = 0的函數(shù),叫做二次函數(shù)。

  這里需要強(qiáng)調(diào):和一元二次方程類(lèi)似,二次項(xiàng)系數(shù)a≠0,而b,c可以為零.二次函數(shù)的定義域是全體實(shí)數(shù)。

  二次函數(shù)圖像與性質(zhì)口訣

  二次函數(shù)拋物線,圖象對(duì)稱(chēng)是關(guān)鍵;

  開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象限;

  開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱(chēng)軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱(chēng)軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。

  2016哈爾濱中考數(shù)學(xué)知識(shí)(二)

  一次函數(shù)的定義

  一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定時(shí),可以用一元一次方程確定另一個(gè)變量的值。

  函數(shù)的表示方法

  列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。

  解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。

  圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。

  一次函數(shù)的性質(zhì)

  一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù)

  注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)

  a).k不為0

  b).x的指數(shù)是1

  c).b取任意實(shí)數(shù)

  一次函數(shù)y=kx+b的圖像是經(jīng)過(guò)(0,b)和(-b/k,0)兩點(diǎn)的一條直線,我們稱(chēng)它為直線y=kx+b,它可以看做直線y=kx平移|b|個(gè)單位長(zhǎng)度得到。(當(dāng)b>0時(shí),向上平移;b<0時(shí),向下平移)

  確定函數(shù)定義域的方法

  (1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);

  (2)關(guān)系式含有分式時(shí),分式的分母不等于零;

  (3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;

  (4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;

  (5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。

  用待定系數(shù)法確定函數(shù)解析式的一般步驟

  (1)根據(jù)已知條件寫(xiě)出含有待定系數(shù)的函數(shù)關(guān)系式;

  (2)將x、y的幾對(duì)值或圖像上的幾個(gè)點(diǎn)的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程

  (3)解方程得出未知系數(shù)的值;

  (4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式。

  2016哈爾濱中考數(shù)學(xué)知識(shí)(三)

  1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(zhǎng)稱(chēng)為半徑。

  2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。

  3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

  4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱(chēng)為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

  6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。

  2016哈爾濱中考數(shù)學(xué)知識(shí)(四)

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長(zhǎng)/圓錐母線—l 周長(zhǎng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

  1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對(duì)稱(chēng)圖形,其對(duì)稱(chēng)軸是任意一條過(guò)圓心的直線。圓也是中心對(duì)稱(chēng)圖形,其對(duì)稱(chēng)中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。

  4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。

  5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。

  7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。

  8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

472431