六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>各學科學習方法>數學學習方法>

小學數學知識點總復習資料(2)

時間: 朝燕820 分享

  (四)數的整除

  1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。

  2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續(xù)去除,一直除到所得的商只有公約數1為止,然后把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。

  3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。

  4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質; 兩個合數的公約數只有1時,這兩個合數互質。

  (五) 約分和通分

  約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。

  通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。

  三 性質和規(guī)律

  (一)商不變的規(guī)律

  商不變的規(guī)律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。

  (二)小數的性質

  小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。

  (三)小數點位置的移動引起小數大小的變化

  1. 小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……

  2. 小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……

  3. 小數點向左移或者向右移位數不夠時,要用“0"補足位。

  (四)分數的基本性質

  分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。

  (五)分數與除法的關系

  1. 被除數÷除數= 被除數/除數

  2. 因為零不能作除數,所以分數的分母不能為零。

  3. 被除數 相當于分子,除數相當于分母。

  四 運算的意義

  (一)整數四則運算

  1整數加法:

  把兩個數合并成一個數的運算叫做加法。

  在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。

  加數+加數=和 一個加數=和-另一個加數

  2整數減法:

  已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。

  在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。

  加法和減法互為逆運算。

  3整數乘法:

  求幾個相同加數的和的簡便運算叫做乘法。

  在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。

  在乘法里,0和任何數相乘都得0. 1和任何數相乘都的任何數。

  一個因數× 一個因數 =積 一個因數=積÷另一個因數

  4 整數除法:

  已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。

  在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。

  乘法和除法互為逆運算。

  在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。

  被除數÷除數=商 除數=被除數÷商 被除數=商×除數

  (二)小數四則運算

  1. 小數加法:

  小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。

  2. 小數減法:

  小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算.

  3. 小數乘法:

  小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。

  4. 小數除法:

  小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。

  5. 乘方:

  求幾個相同因數的積的運算叫做乘方。例如 3 × 3 =32

  (三)分數四則運算

  1. 分數加法:

  分數加法的意義與整數加法的意義相同。 是把兩個數合并成一個數的運算。

  2. 分數減法:

  分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。

  3. 分數乘法:

  分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

  4. 乘積是1的兩個數叫做互為倒數。

  5. 分數除法:

  分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。

  (四)運算定律

  1. 加法交換律:

  兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。

  2. 加法結合律:

  三個數相加,先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。

  3. 乘法交換律:

  兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。

  4. 乘法結合律:

  三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把后兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。

  5. 乘法分配律:

  兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。

  6. 減法的性質:

  從一個數里連續(xù)減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。

  (五)運算法則

  1. 整數加法計算法則:

  相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。

  2. 整數減法計算法則:

  相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合并在一起,再減。

  3. 整數乘法計算法則:

  先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的數加起來。

  4. 整數除法計算法則:

  先從被除數的高位除起,除數是幾位數,就看被除數的前幾位; 如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數要小于除數。

  5. 小數乘法法則:

  先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。

  6. 除數是整數的小數除法計算法則:

  先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續(xù)除。

  7. 除數是小數的除法計算法則:

  先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行計算。

  8. 同分母分數加減法計算方法:

  同分母分數相加減,只把分子相加減,分母不變。

  9. 異分母分數加減法計算方法:

  先通分,然后按照同分母分數加減法的的法則進行計算。

  10. 帶分數加減法的計算方法:

  整數部分和分數部分分別相加減,再把所得的數合并起來。

  11. 分數乘法的計算法則:

  分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。

  12. 分數除法的計算法則:

  甲數除以乙數(0除外),等于甲數乘乙數的倒數。

  (六) 運算順序

  1. 小數四則運算的運算順序和整數四則運算順序相同。

  2. 分數四則運算的運算順序和整數四則運算順序相同。

  3. 沒有括號的混合運算:

  同級運算從左往右依次運算;兩級運算 先算乘、除法,后算加減法。

  4. 有括號的混合運算:

  先算小括號里面的,再算中括號里面的,最后算括號外面的。

  5. 第一級運算:

  加法和減法叫做第一級運算。

  6. 第二級運算:

  乘法和除法叫做第二級運算。

  五 應用

  (一)整數和小數的應用

  1 簡單應用題

  (1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。

  (2) 解題步驟:

  a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。

  b選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據所給的條件和問題,聯(lián)系四則運算的含義,分析數量關系,確定算法,進行解答并標明正確的單位名稱。

  C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。

下一頁更多有關“小學數學知識點總復習資料”的內容

2126426