小學(xué)數(shù)學(xué)知識點總復(fù)習(xí)資料(2)
(四)數(shù)的整除
1. 把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。
2. 求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公約數(shù) 。
3. 求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。
4. 成為互質(zhì)關(guān)系的兩個數(shù):1和任何自然數(shù)互質(zhì) ; 相鄰的兩個自然數(shù)互質(zhì); 當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì); 兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì)。
(五) 約分和通分
約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分數(shù)為止。
通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。
三 性質(zhì)和規(guī)律
(一)商不變的規(guī)律
商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。
(二)小數(shù)的性質(zhì)
小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。
(三)小數(shù)點位置的移動引起小數(shù)大小的變化
1. 小數(shù)點向右移動一位,原來的數(shù)就擴大10倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000倍……
2. 小數(shù)點向左移動一位,原來的數(shù)就縮小10倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000倍……
3. 小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0"補足位。
(四)分數(shù)的基本性質(zhì)
分數(shù)的基本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分數(shù)的大小不變。
(五)分數(shù)與除法的關(guān)系
1. 被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù)
2. 因為零不能作除數(shù),所以分數(shù)的分母不能為零。
3. 被除數(shù) 相當于分子,除數(shù)相當于分母。
四 運算的意義
(一)整數(shù)四則運算
1整數(shù)加法:
把兩個數(shù)合并成一個數(shù)的運算叫做加法。
在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。
加數(shù)+加數(shù)=和 一個加數(shù)=和-另一個加數(shù)
2整數(shù)減法:
已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。
在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。
加法和減法互為逆運算。
3整數(shù)乘法:
求幾個相同加數(shù)的和的簡便運算叫做乘法。
在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。
在乘法里,0和任何數(shù)相乘都得0. 1和任何數(shù)相乘都的任何數(shù)。
一個因數(shù)× 一個因數(shù) =積 一個因數(shù)=積÷另一個因數(shù)
4 整數(shù)除法:
已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。
在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。
乘法和除法互為逆運算。
在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。
被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù)
(二)小數(shù)四則運算
1. 小數(shù)加法:
小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。
2. 小數(shù)減法:
小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算.
3. 小數(shù)乘法:
小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾……是多少。
4. 小數(shù)除法:
小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。
5. 乘方:
求幾個相同因數(shù)的積的運算叫做乘方。例如 3 × 3 =32
(三)分數(shù)四則運算
1. 分數(shù)加法:
分數(shù)加法的意義與整數(shù)加法的意義相同。 是把兩個數(shù)合并成一個數(shù)的運算。
2. 分數(shù)減法:
分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。
3. 分數(shù)乘法:
分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
4. 乘積是1的兩個數(shù)叫做互為倒數(shù)。
5. 分數(shù)除法:
分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。
(四)運算定律
1. 加法交換律:
兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a 。
2. 加法結(jié)合律:
三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即(a+b)+c=a+(b+c) 。
3. 乘法交換律:
兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即a×b=b×a。
4. 乘法結(jié)合律:
三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6. 減法的性質(zhì):
從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c) 。
(五)運算法則
1. 整數(shù)加法計算法則:
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。
2. 整數(shù)減法計算法則:
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。
3. 整數(shù)乘法計算法則:
先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。
4. 整數(shù)除法計算法則:
先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位; 如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。
5. 小數(shù)乘法法則:
先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。
6. 除數(shù)是整數(shù)的小數(shù)除法計算法則:
先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。
7. 除數(shù)是小數(shù)的除法計算法則:
先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。
8. 同分母分數(shù)加減法計算方法:
同分母分數(shù)相加減,只把分子相加減,分母不變。
9. 異分母分數(shù)加減法計算方法:
先通分,然后按照同分母分數(shù)加減法的的法則進行計算。
10. 帶分數(shù)加減法的計算方法:
整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。
11. 分數(shù)乘法的計算法則:
分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。
12. 分數(shù)除法的計算法則:
甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
(六) 運算順序
1. 小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。
2. 分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。
3. 沒有括號的混合運算:
同級運算從左往右依次運算;兩級運算 先算乘、除法,后算加減法。
4. 有括號的混合運算:
先算小括號里面的,再算中括號里面的,最后算括號外面的。
5. 第一級運算:
加法和減法叫做第一級運算。
6. 第二級運算:
乘法和除法叫做第二級運算。
五 應(yīng)用
(一)整數(shù)和小數(shù)的應(yīng)用
1 簡單應(yīng)用題
(1) 簡單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運算解答的應(yīng)用題,通常叫做簡單應(yīng)用題。
(2) 解題步驟:
a 審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復(fù)述條件和問題,幫助理解題意。
b選擇算法和列式計算:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運算的含義,分析數(shù)量關(guān)系,確定算法,進行解答并標明正確的單位名稱。
C檢驗:就是根據(jù)應(yīng)用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。
下一頁更多有關(guān)“小學(xué)數(shù)學(xué)知識點總復(fù)習(xí)資料”的內(nèi)容