六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 高中數(shù)學(xué)向量知識點

高中數(shù)學(xué)向量知識點

時間: 芷瓊1026 分享

高中數(shù)學(xué)向量知識點

  在數(shù)學(xué)中,向量指具有大小(magnitude)和方向的量。下面是學(xué)習(xí)啦小編為你整理的高中數(shù)學(xué)向量知識點,一起來看看吧。

  高中數(shù)學(xué)向量知識點:基礎(chǔ)知識


  高中數(shù)學(xué)向量知識點:坐標(biāo)表示

  高中數(shù)學(xué)向量知識點:公式

  向量共線的重要條件

  若b≠0,則a//b的重要條件是存在唯一實數(shù)λ,使a=λb。

  a//b的重要條件是 xy'-x'y=0。

  零向量0平行于任何向量。

  [編輯本段]向量垂直的充要條件

  a⊥b的充要條件是 a•b=0。

  a⊥b的充要條件是 xx'+yy'=0。

  零向量0垂直于任何向量.

  設(shè)a=(x,y),b=(x',y')。

  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運算律:

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點,指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  4、數(shù)乘向量

  實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。

  當(dāng)λ>0時,λa與a同方向;

  當(dāng)λ<0時,λa與a反方向;

  當(dāng)λ=0時,λa=0,方向任意。

  當(dāng)a=0時,對于任意實數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

  當(dāng)∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

  當(dāng)∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

  數(shù)與向量的乘法滿足下面的運算律

  結(jié)合律:(λa)•b=λ(a•b)=(a•λb)。

  向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

  數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數(shù)乘向量的消去律:① 如果實數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

  3、向量的的數(shù)量積

  定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π

  定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。

  向量的數(shù)量積的坐標(biāo)表示:a•b=x•x'+y•y'。

  向量的數(shù)量積的運算律

  a•b=b•a(交換律);

  (λa)•b=λ(a•b)(關(guān)于數(shù)乘法的結(jié)合律);

  (a+b)•c=a•c+b•c(分配律);

  向量的數(shù)量積的性質(zhì)

  a•a=|a|的平方。

  a⊥b 〈=〉a•b=0。

  |a•b|≤|a|•|b|。

  向量的數(shù)量積與實數(shù)運算的主要不同點

  1、向量的數(shù)量積不滿足結(jié)合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

  2、向量的數(shù)量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。

  3、|a•b|≠|a|•|b|

  4、由 |a|=|b| ,推不出 a=b或a=-b。

  4、向量的向量積

  定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構(gòu)成右手系。若a、b共線,則a×b=0。

  向量的向量積性質(zhì):

  ∣a×b∣是以a和b為邊的平行四邊形面積。

  a×a=0。

  a‖b〈=〉a×b=0。

  向量的向量積運算律

  a×b=-b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c.

  注:向量沒有除法,“向量AB/向量CD”是沒有意義的。


猜你感興趣的:

1.高一數(shù)學(xué)平面向量知識點總結(jié)

2.高二數(shù)學(xué)平面向量的知識點歸納

3.高二數(shù)學(xué)向量知識點總結(jié)

4.高中數(shù)學(xué)必修4平面向量知識點總結(jié)

5.高中數(shù)學(xué)向量復(fù)習(xí)

3054202