六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>各學(xué)科學(xué)習(xí)方法>數(shù)學(xué)學(xué)習(xí)方法>

遼寧省高三數(shù)學(xué)一模試卷答案解析

時(shí)間: 麗儀1102 分享

  遼寧省的高三一模考試已經(jīng)結(jié)束,數(shù)學(xué)的試卷答案已經(jīng)整理出來,快來校對吧。下面由學(xué)習(xí)啦小編為大家提供關(guān)于遼寧省高三數(shù)學(xué)一模試卷答案解析,希望對大家有幫助!

  遼寧省高三數(shù)學(xué)一模試卷答案解析選擇題

  (本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)

  1.(5分)(2015•沈陽一模)若全集U={1,2,3,4,5,6},M={1,4},N={2,3},則集合(∁UM)∩N等于(  )

  A. {2,3} B. {2,3,5,6} C. {1,4} D. {1,4,5,6}

  【考點(diǎn)】: 交、并、補(bǔ)集的混合運(yùn)算.

  【專題】: 集合.

  【分析】: 根據(jù)集合的基本運(yùn)算即可得到結(jié)論.

  【解析】: 解:由補(bǔ)集的定義可得∁UN={2,3,5},

  則(∁UN)∩M={2,3},

  故選:A

  【點(diǎn)評】: 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

  2.(5分)(2015•沈陽一模)設(shè)復(fù)數(shù)z滿足(1﹣i)z=2i,則z=(  )

  A. ﹣1+i B. ﹣1﹣i C. 1+i D. 1﹣i

  【考點(diǎn)】: 復(fù)數(shù)代數(shù)形式的乘除運(yùn)算.

  【專題】: 計(jì)算題.

  【分析】: 根據(jù)所給的等式兩邊同時(shí)除以1﹣i,得到z的表示式,進(jìn)行復(fù)數(shù)的除法運(yùn)算,分子和分母同乘以分母的共軛復(fù)數(shù),整理成最簡形式,得到結(jié)果.

  【解析】: 解:∵復(fù)數(shù)z滿足z(1﹣i)=2i,

  ∴z= =﹣1+i

  故選A.

  【點(diǎn)評】: 本題考查代數(shù)形式的除法運(yùn)算,是一個(gè)基礎(chǔ)題,這種題目若出現(xiàn)一定是一個(gè)送分題目,注意數(shù)字的運(yùn)算.

  3.(5分)(2014•安徽)“x<0”是“ln(x+1)<0”的(  )

  A. 充分不必要條件 B. 必要不充分條件

  C. 充分必要條件 D. 既不充分也不必要條件

  【考點(diǎn)】: 充要條件.

  【專題】: 計(jì)算題;簡易邏輯.

  【分析】: 根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進(jìn)行判斷即可得到結(jié)論.

  【解析】: 解:∵x<0,∴x+1<1,當(dāng)x+1>0時(shí),ln(x+1)<0;

  ∵ln(x+1)<0,∴0

  ∴“x<0”是ln(x+1)<0的必要不充分條件.

  故選:B.

  【點(diǎn)評】: 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).

  4.(5分)(2015•沈陽一模)拋物線y=4ax2(a≠0)的焦點(diǎn)坐標(biāo)是(  )

  A. (0,a) B. (a,0) C. (0, ) D. ( ,0)

  【考點(diǎn)】: 拋物線的簡單性質(zhì).

  【專題】: 圓錐曲線的定義、性質(zhì)與方程.

  【分析】: 先將拋物線的方程化為標(biāo)準(zhǔn)式,再求出拋物線的焦點(diǎn)坐標(biāo).

  【解析】: 解:由題意知,y=4ax2(a≠0),則x2= ,

  所以拋物線y=4ax2(a≠0)的焦點(diǎn)坐標(biāo)是(0, ),

  故選:C.

  【點(diǎn)評】: 本題考查拋物線的標(biāo)準(zhǔn)方程、焦點(diǎn)坐標(biāo),屬于基礎(chǔ)題.

  5.(5分)(2015•沈陽一模)設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1=1,公差d=2,Sn+2﹣Sn=36,則n=(  )

  A. 5 B. 6 C. 7 D. 8

  【考點(diǎn)】: 等差數(shù)列的性質(zhì).

  【專題】: 等差數(shù)列與等比數(shù)列.

  【分析】: 由Sn+2﹣Sn=36,得an+1+an+2=36,代入等差數(shù)列的通項(xiàng)公式求解n.

  【解析】: 解:由Sn+2﹣Sn=36,得:an+1+an+2=36,

  即a1+nd+a1+(n+1)d=36,

  又a1=1,d=2,

  ∴2+2n+2(n+1)=36.

  解得:n=8.

  故選:D.

  【點(diǎn)評】: 本題考查了等差數(shù)列的性質(zhì),考查了等差數(shù)列的通項(xiàng)公式,是基礎(chǔ)題.

  6.(5分)(2015•沈陽一模)已知某幾何體的三視圖如,根據(jù)圖中標(biāo)出的尺寸 (單位:cm),可得這個(gè)幾何體的體積是(  )

  A. B. C. 2cm3 D. 4cm3

  【考點(diǎn)】: 棱柱、棱錐、棱臺的體積.

  【專題】: 空間位置關(guān)系與距離.

  【分析】: 由題目給出的幾何體的三視圖,還原得到原幾何體,然后直接利用三棱錐的體積公式求解.

  【解析】: 解:由三視圖可知,該幾何體為底面是正方形,且邊長為2cm,高為2cm的四棱錐,

  如圖,

  故 ,

  故選B.

  【點(diǎn)評】: 本題考查了棱錐的體積,考查了空間幾何體的三視圖,能夠由三視圖還原得到原幾何體是解答該題的關(guān)鍵,是基礎(chǔ)題.

  7.(5分)(2015•沈陽一模)已知x,y滿足約束條件 ,則z=2x+y的最大值為(  )

  A. 3 B. ﹣3 C. 1 D.

  【考點(diǎn)】: 簡單線性規(guī)劃.

  【專題】: 計(jì)算題.

  【分析】: 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=2x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.

  【解析】: 解:作圖

  易知可行域?yàn)橐粋€(gè)三角形,

  當(dāng)直線z=2x+y過點(diǎn)A(2,﹣1)時(shí),z最大是3,

  故選A.

  【點(diǎn)評】: 本小題是考查線性規(guī)劃問題,本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.

  8.(5分)(2015•沈陽一模)執(zhí)行如圖所示的程序框圖,則輸出的k的值為(  )

  A. 4 B. 5 C. 6 D. 7

  【考點(diǎn)】: 程序框圖.

  【專題】: 計(jì)算題;規(guī)律型;算法和程序框圖.

  【分析】: 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出輸出不滿足條件S=0+1+2+8+…<100時(shí),k+1的值.

  【解析】: 解:分析程序中各變量、各語句的作用,

  再根據(jù)流程圖所示的順序,

  可知:該程序的作用是:

  輸出不滿足條件S=0+1+2+8+…<100時(shí),k+1的值.

  第一次運(yùn)行:滿足條件,s=1,k=1;

  第二次運(yùn)行:滿足條件,s=3,k=2;

  第三次運(yùn)行:滿足條件,s=11<100,k=3;滿足判斷框的條件,繼續(xù)運(yùn)行,

  第四次運(yùn)行:s=1+2+8+211>100,k=4,不滿足判斷框的條件,退出循環(huán).

  故最后輸出k的值為4.

  故選:A.

  【點(diǎn)評】: 本題考查根據(jù)流程圖(或偽代碼)輸出程序的運(yùn)行結(jié)果.這是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

  9.(5分)(2015•沈陽一模)已知函數(shù) ,若 ,則f(﹣a)=(  )

  A. B. C. D.

  【考點(diǎn)】: 函數(shù)的值.

  【專題】: 計(jì)算題.

  【分析】: 利用f(x)=1+ ,f(x)+f(﹣x)=2即可求得答案.

  【解析】: 解:∵f(x)= =1+ ,

  ∴f(﹣x)=1﹣ ,

  ∴f(x)+f(﹣x)=2;

  ∵f(a)= ,

  ∴f(﹣a)=2﹣f(a)=2﹣ = .

  故選C.

  【點(diǎn)評】: 本題考查函數(shù)的值,求得f(x)+f(﹣x)=2是關(guān)鍵,屬于中檔題.

  10.(5分)(2015•沈陽一模)在△ABC中,若| + |=| ﹣ |,AB=2,AC=1,E,F(xiàn)為BC邊的三等分點(diǎn),則 • =(  )

  A. B. C. D.

  【考點(diǎn)】: 平面向量數(shù)量積的運(yùn)算.

  【專題】: 計(jì)算題;平面向量及應(yīng)用.

  【分析】: 運(yùn)用向量的平方即為模的平方,可得 =0,再由向量的三角形法則,以及向量共線的知識,化簡即可得到所求.

  【解析】: 解:若| + |=| ﹣ |,

  則 = ,

  即有 =0,

  E,F(xiàn)為BC邊的三等分點(diǎn),

  則 =( + )•( + )=( )•( )

  =( + )•( + )

  = + + = ×(1+4)+0= .

  故選B.

  【點(diǎn)評】: 本題考查平面向量的數(shù)量積的定義和性質(zhì),考查向量的平方即為模的平方,考查向量共線的定理,考查運(yùn)算能力,屬于中檔題.

  11.(5分)(2015•沈陽一模)函數(shù)y= 的圖象與函數(shù)y=2sinπx(﹣2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于(  )

  A. 2 B. 4 C. 6 D. 8

  【考點(diǎn)】: 奇偶函數(shù)圖象的對稱性;三角函數(shù)的周期性及其求法;正弦函數(shù)的圖象.

  【專題】: 壓軸題;數(shù)形結(jié)合.

  【分析】: 的圖象由奇函數(shù) 的圖象向右平移1個(gè)單位而得,所以它的圖象關(guān)于點(diǎn)(1,0)中心對稱,再由正弦函數(shù)的對稱中心公式,可得函數(shù)y2=2sinπx的圖象的一個(gè)對稱中心也是點(diǎn)(1,0),故交點(diǎn)個(gè)數(shù)為偶數(shù),且每一對對稱點(diǎn)的橫坐標(biāo)之和為2.由此不難得到正確答案.

  【解析】: 解:函數(shù) ,y2=2sinπx的圖象有公共的對稱中心(1,0),作出兩個(gè)函數(shù)的圖象如圖

  當(dāng)1

  而函數(shù)y2在(1,4)上出現(xiàn)1.5個(gè)周期的圖象,

  在 和 上是減函數(shù);

  在 和 上是增函數(shù).

  ∴函數(shù)y1在(1,4)上函數(shù)值為負(fù)數(shù),且與y2的圖象有四個(gè)交點(diǎn)E、F、G、H

  相應(yīng)地,y1在(﹣2,1)上函數(shù)值為正數(shù),且與y2的圖象有四個(gè)交點(diǎn)A、B、C、D

  且:xA+xH=xB+xG═xC+xF=xD+xE=2,故所求的橫坐標(biāo)之和為8

  故選D

  【點(diǎn)評】: 發(fā)現(xiàn)兩個(gè)圖象公共的對稱中心是解決本題的入口,討論函數(shù)y2=2sinπx的單調(diào)性找出區(qū)間(1,4)上的交點(diǎn)個(gè)數(shù)是本題的難點(diǎn)所在.

  12.(5分)(2015•廣西校級一模)定義在R上的函數(shù)f(x)滿足:f(x)+f′(x)>1,f(0)=4,則不等式exf(x)>ex+3(其中e為自然對數(shù)的底數(shù))的解集為(  )

  A. (0,+∞) B. (﹣∞,0)∪(3,+∞) C. (﹣∞,0)∪(0,+∞) D. (3,+∞)

  【考點(diǎn)】: 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;導(dǎo)數(shù)的運(yùn)算.

  【專題】: 導(dǎo)數(shù)的綜合應(yīng)用.

  【分析】: 構(gòu)造函數(shù)g(x)=exf(x)﹣ex,(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解

  【解析】: 解:設(shè)g(x)=exf(x)﹣ex,(x∈R),

  則g′(x)=exf(x)+exf′(x)﹣ex=ex[f(x)+f′(x)﹣1],

  ∵f(x)+f′(x)>1,

  ∴f(x)+f′(x)﹣1>0,

  ∴g′(x)>0,

  ∴y=g(x)在定義域上單調(diào)遞增,

  ∵exf(x)>ex+3,

  ∴g(x)>3,

  又∵g(0)═e0f(0)﹣e0=4﹣1=3,

  ∴g(x)>g(0),

  ∴x>0

  故選:A.

  【點(diǎn)評】: 本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.

  遼寧省高三數(shù)學(xué)一模試卷答案解析填空題

  (本大題共4小題,每小題5分,共20分.把答案填在答題紙上.)

  13.(5分)(2015•沈陽一模)若雙曲線E的標(biāo)準(zhǔn)方程是 ,則雙曲線E的漸進(jìn)線的方程是 y= x .

  【考點(diǎn)】: 雙曲線的簡單性質(zhì).

  【專題】: 計(jì)算題;圓錐曲線的定義、性質(zhì)與方程.

  【分析】: 求出雙曲線的a,b,再由漸近線方程y= x,即可得到所求方程.

  【解析】: 解:雙曲線E的標(biāo)準(zhǔn)方程是 ,

  則a=2,b=1,

  即有漸近線方程為y= x,

  即為y= x.

  故答案為:y= x.

  【點(diǎn)評】: 本題考查雙曲線的方程和性質(zhì):漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

  14.(5分)(2015•沈陽一模)已知{an}是等比數(shù)列, ,則a1a2+a2a3+…+anan+1=   .

  【考點(diǎn)】: 數(shù)列的求和;等比數(shù)列的通項(xiàng)公式.

  【專題】: 計(jì)算題.

  【分析】: 首先根據(jù)a2和a5求出公比q,根據(jù)數(shù)列{anan+1}每項(xiàng)的特點(diǎn)發(fā)現(xiàn)仍是等比數(shù)列,根據(jù)等比數(shù)列求和公式可得出答案.

  【解析】: 解:由 ,解得 .

  數(shù)列{anan+1}仍是等比數(shù)列:其首項(xiàng)是a1a2=8,公比為 ,

  所以,

  故答案為 .

  【點(diǎn)評】: 本題主要考查等比數(shù)列通項(xiàng)的性質(zhì)和求和公式的應(yīng)用.應(yīng)善于從題設(shè)條件中發(fā)現(xiàn)規(guī)律,充分挖掘有效信息.

  15.(5分)(2015•沈陽一模)若直線l: (a>0,b>0)經(jīng)過點(diǎn)(1,2)則直線l在x軸和y軸的截距之和的最小值是 3+2  .

  【考點(diǎn)】: 直線的截距式方程.

  【專題】: 直線與圓.

  【分析】: 把點(diǎn)(1,1)代入直線方程,得到 =1,然后利用a+b=(a+b)( ),展開后利用基本不等式求最值.

  【解析】: 解:∵直線l: (a>0,b>0)經(jīng)過點(diǎn)(1,2)

  ∴ =1,

  ∴a+b=(a+b)( )=3+ ≥3+2 ,當(dāng)且僅當(dāng)b= a時(shí)上式等號成立.

  ∴直線在x軸,y軸上的截距之和的最小值為3+2 .

  故答案為:3+2 .

  【點(diǎn)評】: 本題考查了直線的截距式方程,考查利用基本不等式求最值,是中檔題.

  16.(5分)(2015•沈陽一模)在直三棱柱ABC﹣A1B1C1中,若BC⊥AC,∠A= ,AC=4,AA1=4,M為AA1的中點(diǎn),點(diǎn)P為BM中點(diǎn),Q在線段CA1上,且A1Q=3QC.則異面直線PQ與AC所成角的正弦值   .

  【考點(diǎn)】: 異面直線及其所成的角.

  【專題】: 空間角.

  【分析】: 以C為原點(diǎn),CB為x軸,CA為y軸,CC1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線PQ與AC所成角的正弦值.

  【解析】: 解:以C為原點(diǎn),CB為x軸,CA為y軸,CC1為z軸,

  建立空間直角坐標(biāo)系,

  則由題意得A(0,4,0),C(0,0,0),

  B(4 ,0,0),M(0,4,2),A1(0,4,4),

  P(2 ,2,1), = = (0,4,4)=(0,1,1),

  ∴Q(0,1,1), =(0,﹣4,0), =(﹣2 ,﹣1,0),

  設(shè)異面直線PQ與AC所成角為θ,

  cosθ=|cos< >|=| |= ,

  ∴sinθ= = .

  故答案為: .

  【點(diǎn)評】: 本題考查異面直線PQ與AC所成角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

  >>>下一頁更多精彩“遼寧省高三數(shù)學(xué)一模試卷答案解析解答題”

3727821