六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦 > 學習方法 > 各學科學習方法 > 數(shù)學學習方法 > 關于兩種數(shù)學方法

關于兩種數(shù)學方法

時間: 鞏詩21178 分享

關于兩種數(shù)學方法

  數(shù)學思維方法分為兩種,形象思維方法和抽象思維方法。小學數(shù)學要培養(yǎng)學生的形象思維能力,并在此基礎上,為發(fā)展抽象思維能力打下堅實的基礎。下面,讓小編為你們講解這兩種數(shù)學方法。

  關于兩種數(shù)學方法

  一、形象思維方法

  形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,并從具體形象展開來的思維過程。

  形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現(xiàn)一般,始終保留著對事物的直觀性。它的思維過程表現(xiàn)為表象、類比、聯(lián)想、想象。它的思維品質表現(xiàn)為對直觀材料進行積極想象,對表象進行加工、提煉進而提示出本質、規(guī)律,或求出對象。它的思維目標是解決實際問題,并且在解決問題當中提高自身的思維能力。

  1、實物演示法

  利用身邊的實物來演示數(shù)學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。

  這種方法可以使數(shù)學內容形象化,數(shù)量關系具體化。比如:數(shù)學中的相遇問題。通過實物演示不僅能夠解決“同時、相向而行、相遇”等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。

  二年級數(shù)學教材中,“三個小朋友見面握手,每兩人握一次,共要握幾次手”與“用三張不同的數(shù)字卡片擺成兩位數(shù),共可以擺成多少個兩位數(shù)”。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。

  特別是一些數(shù)學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴于實物演示作思維的基礎。

  所以,小學數(shù)學教師應盡可能多地制作一些數(shù)學教(學)具,而且這些教(學)具用過后要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。

  績。

  2、圖示法

  借助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。

  圖示法直觀可靠,便于分析數(shù)形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴于人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯(lián)想、想象出現(xiàn)謬誤或走入誤區(qū),最后導致錯誤的結果。比如有的數(shù)學教師愛徒手畫數(shù)學圖形,難免造成不準確,使學生產生誤解。

  在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。

  例1.把一根木頭鋸成3段需要24分鐘,鋸成6段需要多少分鐘?(圖略)

  思維方法是:圖示法。

  思維方向是:鋸幾次,每次用幾分鐘。

  思路是:鋸3段鋸了幾次,每次用幾分鐘,鋸6段鋸了幾次,需要多少分鐘。

  例2 .判斷:等腰三角形中,點D是底邊BC的中點,圖甲的面積比圖乙的面積大,圖甲的周長比圖乙的周長長。(圖略)

  思維方法:圖示法。

  思維方向:先比較面積,再比較周長。

  思路:作條輔助線。圖甲占的面積大,圖乙所占面積小,所以“圖甲的面積比圖乙的面積大”是正確的。線段AD比曲線AD短,所以“圖甲的周長比圖乙的周長長”是錯誤的。

  3、列表法

  運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便于分析比較、提示規(guī)律,也有利于記憶。它的局限性在于求解范圍小,適用題型狹窄,大多跟尋找規(guī)律或顯示規(guī)律有關。比如,正、反比例的內容,整理數(shù)據,乘法口訣,數(shù)位順序等內容的教學大都采用“列表法”。

  用列表法解決傳統(tǒng)數(shù)學問題:雞兔同籠問題。制作三個表格:第一張表格是逐一舉例法,根據雞與兔共20只的條件,假設雞只有1只,那么兔就有19只,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以后發(fā)現(xiàn)了只數(shù)與腿數(shù)的規(guī)律,從而減少了列舉的次數(shù);第三張表格是從中間開始列舉,由于雞與兔共20只,所以各取10只,接著根據實際的數(shù)據情況確定列舉的方向。

  4、探索法

  按照一定方向,通過嘗試來摸索規(guī)律、探求解決問題思路的方法叫做探究法。我國著名數(shù)學家華羅庚說過,在數(shù)學里,“難處不在于有了公式去證明,而在于沒有公式之前,怎樣去找出公式來。”蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。“學習要以探究為核心”,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常采取的一種好方法就是探究、嘗試。

  第一、探究方向要準確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學“比例尺”時,教師創(chuàng)設“學生出題考老師”的教學情境,師:“現(xiàn)在我們考試好不好?”學生一聽:很奇怪,正當學生疑惑之時,教師說:“今天改變過去的考試方法,由你們出題考老師,愿意嗎?”學生聽后很感興趣。教師說:“這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?”于是學生紛紛上臺度量、報數(shù),教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:“老師您快告訴我們吧,您是怎樣算的?”教師說:“其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?”于是引出所要學習的內容“比例尺”。

  第二、定向猜測,反復實踐,在不斷分析、調整中尋找規(guī)律。

  例3 .找規(guī)律填數(shù)。

  (1)1、4、 、10、13、 、19;

  (2)2、8、18、32、 、72、 。

  第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。

  小學數(shù)學教學活動中,教師應盡量創(chuàng)設讓學生去探究的情景,創(chuàng)造讓學生去探究的機會,鼓勵有探究精神和習慣的學生。

  5、觀察法

  通過大量具體事例,歸納發(fā)現(xiàn)事物的一般規(guī)律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.”

  小學數(shù)學“觀察”的內容一般有:①數(shù)字的變化規(guī)律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。

  如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數(shù)的位置,積不變。

  “觀察”的要求:

  第一、觀察要細致、準確。

  例4 .找出下列各題錯在哪里,并改正。

  (1)25×16=25×(4×4)=(25×4)×(25×4);

  (2)18×36+18×64=(18+18)×(36+64)

  例5 .直接寫出下列各題的得數(shù):

  (1)3.6+6.4 (2)3.6+6.04

  (3)125×57×0.04 (4)(351-37-13)÷5

  第二、科學觀察??茖W觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到“有序”觀察:(1)面——形狀、個數(shù)、面與面之間的關系;(2)棱——棱的形成、條數(shù)、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數(shù),認識頂點的一個重要作用是引出長方體長、寬、高的概念。

  第三, 觀察必定與思考結合。

  6、典型法

  針對題目去聯(lián)想已經解過的典型問題的解題規(guī)律,從而找出解題思路的方法叫做典型法。典型是相對于普遍而言的。解決數(shù)學問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總算法、行程、工程、消同求異、平均數(shù)等。

  運用典型法必須注意:

  (1)要掌握典型材料的關鍵及規(guī)律。

  例7.已知爸爸比兒子大30歲,爸爸今年的年齡正好是兒子的7倍。爸爸、兒子今年分別是多少歲?關鍵點在:爸爸比兒子大30歲,爸爸的年齡比兒子多幾倍。典型題都有典型解法,要想真正學好數(shù)學,即要理解和掌握一般思路和解法,還要學會典型解法。

  (2)熟悉典型材料,并能敏捷地聯(lián)想到所適用的典型,從而確定所需要的解題方法。

  例8.見到“某城市有一條公共汽車線路,長16500米,平均每隔500米設一個車站。這條線路需要設多少個車站?”這樣題目,就應該聯(lián)想到上面所講到的“鋸木頭用多少分鐘”的典型問題。

  (3)典型和技巧相聯(lián)系。

  例9.甲乙兩個工程隊共有82人,如果從乙隊調8人到甲隊,兩隊人數(shù)正好相等。甲乙兩隊原來各有多少人?這題目的技巧:調前、調后兩隊總人數(shù)沒變。先算調后各隊人數(shù),再算原來各隊人數(shù)。

  7、放縮法

  通過對被研究對象的放縮估計來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴于知識的拓展能力及其想象能力。

  例16.求12和9的最小公倍數(shù)。

  求兩個數(shù)的最小公倍數(shù)一般的方法是“短除式”方法,它是根據這兩個數(shù)的質因數(shù)情況來求出它們的最小公倍數(shù)的。但也有兩個典型方法:一是“如果兩個數(shù)是互質數(shù),那么這兩個數(shù)的最小公倍數(shù)就是它們的乘積”;二是“如果大數(shù)是小數(shù)的倍數(shù),那么這兩個數(shù)的最小公倍數(shù)就是大數(shù)”?,F(xiàn)在我們根據典型方法二,進行擴展運用,放大“大數(shù)”來求12和9的最小公倍數(shù)。

  12不是9的倍數(shù),就把它放大2倍,得24,仍然不是9的倍數(shù),放大3倍,得36,36是9的倍數(shù),那么,12和9的最小公倍數(shù)就是36。這種方法的關鍵點在于,如果大數(shù)不是小數(shù)的倍數(shù),就把大數(shù)翻倍,但一定從2倍開始,如果一下子擴大6倍,得數(shù)是它們的公倍數(shù),而不是最小的了。

  例17.期末考試,小剛的語文成績和英語成績的和是197分;語文和數(shù)學成績加起來是199分;數(shù)學和英語成績加起來是196分。想一想,小剛的哪科成績最高?你能算出小剛的各科成績嗎?

  思路一:“放大”。通過觀察發(fā)現(xiàn),語、數(shù)、外三科成績在題目中各出現(xiàn)兩次,我們求197+199+196的和,這個和是“語數(shù)外成績的2倍”,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績。

  思路二:“縮小”。我們用語數(shù)成績的和減去語外的成績,199-197=2(分),這是數(shù)學減英語成績的差。數(shù)學和英語的和是196分,再求數(shù)學的分數(shù)就不難了。

  放縮法有時運用在估算和驗算上。

  例18 .檢驗下列計算結果是否正確?

  (1)18.7×6.9=137.3; (2)17485÷6.6=3609.

  對于(1)用總體估計,放大至19×7=133,估計得數(shù)要小于133,所以本題結果錯誤。對于(2)用最高位估計,把17看作18,把6.6看作6,18÷6=3,顯然答數(shù)的最高位不會是3,故本題結果也不正確。

  例19.把雞和兔放在一起,共有48個頭,114只足,問雞、兔各有幾只。

  這是一道雞兔同籠的典型問題,我們也用放縮法,不妨把雞和兔的足數(shù)縮小2倍,那么,雞的足數(shù)和它的頭數(shù)一樣,而兔的足數(shù)是它的只數(shù)的2倍。所以,總的足數(shù)縮小2倍后,雞和兔的總足數(shù)與它們的總只數(shù)相差數(shù)就是兔的只數(shù)。

  8、驗證法

  你的結果正確嗎?不能只等教師的評判,重要的是自己心里要清楚,對自己的學習有一個清楚的評價,這是優(yōu)秀學生必備的學習品質。

  驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養(yǎng)成嚴謹細致的好習慣。

  (1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。

  (2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。

  (3)是否符合實際。“千教萬教教人求真,千學萬學學做真人”陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現(xiàn)有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)

  按照“四舍五入法”保留近似數(shù)無疑是正確的,但和實際不符合,做衣服的剩余布料只能舍去。教學中,常識性的東西予以重視。做衣服套數(shù)的近似計算要用“去尾法”。

  (4)驗證的動力在猜想和質疑。牛頓曾說過:“沒有大膽的猜想,就做不出偉大的發(fā)現(xiàn)。”“猜”也是解決問題的一種重要策略??梢蚤_拓學生的思維、激發(fā)“我要學”的愿望。為了避免瞎猜,一定 學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。

  二、抽象思維方法

  運用概念、判斷、推理來反映現(xiàn)實的思維過程,叫抽象思維,也叫邏輯思維。

  抽象思維又分為:形式思維和辯證思維??陀^現(xiàn)實有其相對穩(wěn)定的一面,我們就可以采用形式思維的方式;客觀存在也有其不斷發(fā)展變化的一面,我們可以采用辯證思維的方式。形式思維是辯證思維的基礎。

  形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。

  辯證思維能力:聯(lián)系、發(fā)展變化、對立統(tǒng)一律、質量互變律、否定之否定律。

  小學數(shù)學要培養(yǎng)學生初步的抽象思維能力,重點突出在:(1)思維品質上,應該具備思維的敏捷性、靈活性、聯(lián)系性和創(chuàng)造性。(2)思維方法上,應該學會有條有理,有根有據地思考。(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。(4)思維訓練上,應該要求:正確地運用概念,恰當?shù)叵屡袛?,合乎邏輯地推理?/p>

  9、對照法

  如何正確地理解和運用數(shù)學概念?小學數(shù)學常用的方法就是對照法。根據數(shù)學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數(shù)學知識的理解、記憶、辨識、再現(xiàn)、遷移來解題的方法叫做對照法。

  這個方法的思維意義就在于,訓練學生對數(shù)學知識的正確理解、牢固記憶、準確辨識。

  例20.個連續(xù)自然數(shù)的和是18,則這三個自然數(shù)從小到大分別是多少?

  對照自然數(shù)的概念和連續(xù)自然數(shù)的性質可以知道:三個連續(xù)自然數(shù)和的平均數(shù)就是這三個連續(xù)自然數(shù)的中間那個數(shù)。

  例21.判斷:能被2除盡的數(shù)一定是偶數(shù)。

  這里要對照“除盡”和“偶數(shù)”這兩個數(shù)學概念。只有這兩個概念全理解了,才能做出正確判斷。

  10、公式法

  運用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數(shù)學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規(guī)則、法則有一個正確而深刻的理解,并能準確運用。

  例22.計算59×37+12×59+59

  59×37+12×59+59

  =59×(37+12+1) …………運用乘法分配律

  =59×50      …………運用加法計算法則

  =(60-1) ×50   …………運用數(shù)的組成規(guī)則

  =60×50-1×50  …………運用乘法分配律

  =3000-50     …………運用乘法計算法則

  =2950       …………運用減法計算法則

  11.比較法

  通過對比數(shù)學條件及問題的異同點,研究產生異同點的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。

  比較法要注意:

  (1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

  (2)找聯(lián)系與區(qū)別,這是比較的實質。

  (3)必須在同一種關系下(同一種標準)進行比較,這是“比較”的基本條件。

  (4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。

  (5)因為數(shù)學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

  例23.填空:0.75的最高位是( ),這個數(shù)小數(shù)部分的最高位是( );十分位的數(shù)4與十位上的數(shù)4相比,它們的( )

  相同,( )不同,前者比后者小了( )。

  這道題的意圖就是要對“一個數(shù)的最高位和小數(shù)部分的最高位的區(qū)別”,還有“數(shù)位和數(shù)值”的區(qū)別等。

  例24.六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?

  這是兩種方案的比較。相同點是:六年級人數(shù)不變;相異點是:兩種方案中的條件不一樣。

  找聯(lián)系:每人種樹棵數(shù)變化了,種樹的總棵數(shù)也發(fā)生了變化。

  找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數(shù)為90÷2=45(人)。

  12、分類法

  俗語:物以類聚,人以群分。

  根據事物的共同點和差異點將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。

  分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

  例25.自然數(shù)按約數(shù)的個數(shù)來分,可分成幾類?

  答:可分為三類。(1)只有一個約數(shù)的數(shù),它是一個單位數(shù),只有一個數(shù)1;(2)有兩個約數(shù)的,也叫質數(shù),有無數(shù)個;(3)有三個約數(shù)的,也叫合數(shù),也有無數(shù)個。

  數(shù)學應用題教學方法

  一、影響小學生數(shù)學應用題解題水平的因素

  通過多年的教學發(fā)現(xiàn),導致小學生數(shù)學應用題解題能力無法提高的因素有:

  (一)文字理解能力差

  應用題的特點是用語言、文字敘述日常生活、實際事情,一般由已知條件和問題兩部分組成,解題的過程就是理解題目中表達的意思,并對所含數(shù)量關系進行分析整理,最終正確解答題目。然而學生的應用題解題成績易受數(shù)學應用題陳述不一致、語法、句子結構以及多余信息的影響。例如學生在解決比較問題中出現(xiàn)的主要錯誤為轉換錯誤,在不一致問題中出現(xiàn)的錯誤比一致問題中出現(xiàn)的錯誤多。多余信息、增加一個額外的解題步驟、隱含條件都增加了小學生的解題困難。部分學生不能用自己的話正確地復述測試題的題意更無法提取已知條件、未知條件、隱含條件。

  (二)問題分析能力不足

  問題分析能力在解答應用題過程中發(fā)揮著很重要的作用,學生解答應用題錯誤率高的原因主要是對問題的分析能力的不足。學生思維缺乏邏輯性,不能根據題意來明確解題思路,不會安排解題步驟。

  (三)缺乏解題策略

  部分學生在數(shù)學應用題解題策略上存在問題,表現(xiàn)在評價自己解決問題的能力、確定和選擇適當?shù)慕忸}策略、對計算結果的檢查等方面。學生在解題策略方面確實存在很大的問題,表現(xiàn)在思路不清晰,無法確定題意。

  (四)計算能力和書寫能力較差

  通過長期的教學發(fā)現(xiàn)一些學生在解答應用題時計算卻經常出現(xiàn)錯誤,但列出的算式卻是正確的,還有部分同學由于書寫的不規(guī)范、不工整導致計算失誤。

  (五)學習興趣是解決應用題的前提

  數(shù)學源于生產勞動,應用題更是數(shù)學問題在生活中的體現(xiàn),創(chuàng)設一定的情境呈現(xiàn)給學生。創(chuàng)設一幅生活場景,或用圖表、文字敘述等形式呈現(xiàn)數(shù)量關系。通過這種教學可以讓學生在熟悉的生活背景中感知數(shù)學,激發(fā)學習數(shù)學應用題的興趣,進而增強學習的積極性,這也有助于提高學生用所學數(shù)學知識解決實際問題的能力。

  二、提高學生應用題解題能力的策略

  小學數(shù)學應用題教學就是學生在教師的指導下將應用題的教學過程轉變?yōu)榉治鼍C合、比較概括、抽象推理等思維方法的訓練過程,以達到培養(yǎng)學生能力、智力的目的。下面結合自己多年的教學經驗,根據小學生解答應用題的一般步驟,針對每個環(huán)節(jié)中存在的問題,采取對應的教學策略,以提高學生數(shù)學應用題解題能力。

  (一)培養(yǎng)學生的審題習慣

  準確解答應用題的首要條件是細致地審題,弄明白題意。因此,在教學中要重視培養(yǎng)學生良好的審題習慣。解應用題時,可引導學生找出題所含的直接、間接條件,建立起問題與條件之間的聯(lián)系,從而確定數(shù)量關系。審題時要求學生邊讀題邊思考,分析問題中的已知量與未知量之間的關系,劃線標出。

  (二)教學生分析應用題的方法

  傳授解題過程中,許多學生不明白怎樣解題,很多學生習慣于模仿例題和教師的解答方法,遇到練習過的類型能解答,換新類型就無從下手。究其原因,學生沒有掌握正確的解題方法,很多學生可能無法理解題目的意思,難以表述出題目中的數(shù)量關系。因此,教給學生分析應用題的推理方法,借助于表格、情境圖和漫畫等方法分析應用題的數(shù)量關系,讓學生明確解題思路至關重要。

  (三)培養(yǎng)學生掌握正確的解題步驟

  應用題教學中培養(yǎng)良好的解題習慣,同時檢查驗算和寫好答案的習慣至關重要,要注意引導學生按正確的解題步驟解答,讓學生進行自我評價、總結,強化對的解題方法,找出錯的原因所在。列式計算只解決了“如何解答”的問題,“為何這樣解答”的問題沒有解決。因此,教師應教給學生檢查驗算的方法,最終發(fā)展成學生獨立完成。

  (四)幫助學生聯(lián)系生活,激發(fā)學習興趣

  數(shù)學知識來源于生活實際,學習數(shù)學的目的是解決生活中的實際問題。興趣是學習的動力,激發(fā)學生解應用題的興趣,讓學生在輕松的環(huán)境中解答應用題,可起到事半功倍的作用?!稑藴省吩诮虒W要求中增加了“使學生感受數(shù)學與現(xiàn)實生活的聯(lián)系”,這不僅要求教學要尊重教材、明確教材內容中的知識要素;而且培養(yǎng)了“數(shù)學生活化”思想,要從學生熟悉的生活情境和感興趣的事物出發(fā),選取應用題選材,創(chuàng)設教學情景,把生活問題數(shù)學化,數(shù)學問題生活化。通過周圍熟悉的事物中學習數(shù)學和理解數(shù)學,使學生感受到數(shù)學的趣味和作用,使枯燥的數(shù)學問題變?yōu)榛钌纳瞵F(xiàn)實。綜上所述,在教學中,教師要不斷探索和改進教學方法,根據數(shù)學應用題的特點教學,引導學生理解、掌握數(shù)學應用題解題思路和方法,進而充分調動起小學生的學習興趣,激發(fā)學生的學習動機,最終達到提高學生分析現(xiàn)實問題、解決實際問題能力的目的。

4074305