八年級數學知識點歸納
每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數學的知識點,希望對大家有所幫助。
初二數學三角形知識點歸納
【三角形的重心】
已知:△ABC中,D為BC中點,E為AC中點,AD與BE交于O,CO延長線交AB于F。求證:F為AB中點。
證明:根據燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。
重心的幾條性質:
1.重心和三角形3個頂點組成的3個三角形面積相等。
2.重心到三角形3個頂點距離的平方和最小。
3.在平面直角坐標系中,重心的坐標是頂點坐標的算術平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3
4重心到頂點的距離與重心到對邊中點的距離之比為2:1。
5.重心是三角形內到三邊距離之積的點。
如果用塞瓦定理證,則極易證三條中線交于一點。
初二數學知識點
【相似、全等三角形】
1、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
2、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
3、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
4、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
5、判定定理3三邊對應成比例,兩三角形相似(SSS)
6、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
7、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
8、性質定理2相似三角形周長的比等于相似比
9、性質定理3相似三角形面積的比等于相似比的平方
10、邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等
11、角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等
12、推論有兩角和其中一角的對邊對應相等的兩個三角形全等
13、邊邊邊公理有三邊對應相等的兩個三角形全等
14、斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等
15、全等三角形的對應邊、對應角相等
八年級數學知識點總結北師大版
函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
數學學習方法
1、有準備地進入每一堂課,帶著興趣,帶著問題,帶著目的聽課。準備什么呢就是根據課程表的安排,有針對性地預習弱項課程,預習時要弄清下一節(jié)課的內容,其中哪些是清楚的,哪些是模糊的,哪些是不懂的,由此確定出聽課的重點。課后進行總結,歸納出所講知識的框架,然后做相關練習。
2、按部就班,平時學習不應貪快,要一章一章過關,不要輕易留下不明白或者理解不深刻的問題。
3、學習,“習”的作用決定了學習結果是否有好的成效。每次聽完課后,閱讀一些相關的輔導資料,做一些相關的習題。現在的輔導資料很多,哪一種好呢哪一種適合自己的情況在書店的輔導資料書架前大致閱讀一些,感覺哪本自己看起來很舒服,就用哪一本。如果還感覺不準,可以咨詢代課老師。
八年級數學知識點歸納相關文章: