滬教版初二數(shù)學重點知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的學習方法都是不斷重復學習。下面是小編給大家整理的一些八年級數(shù)學的知識點,希望對大家有所幫助。
八年級數(shù)學知識點
數(shù)據(jù)的收集、整理與描述
一.知識框架
二.知識概念
1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查.
2.抽樣調(diào)查:調(diào)查部分數(shù)據(jù),根據(jù)部分來估計總體的調(diào)查方式稱為抽樣調(diào)查.
3.總體:要考察的全體對象稱為總體.
4.個體:組成總體的每一個考察對象稱為個體.
5.樣本:被抽取的所有個體組成一個樣本.
6.樣本容量:樣本中個體的數(shù)目稱為樣本容量.
7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù).
8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率.
9.組數(shù)和組距:在統(tǒng)計數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個數(shù)稱為組數(shù),每一組兩個端點的差叫做組距.
四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定
1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
矩形判定定理:
1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
菱形的定義:鄰邊相等的平行四邊形。
菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
第一學期初二數(shù)學知識點歸納
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形:兩組對邊分別平行的四邊形.。對邊相等,對角相等,對角線互相平分。兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形??(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個內(nèi)角是直角的平行四邊形??(平行四邊形的性質)。對角線相等,四個角都是直角。有一個內(nèi)角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質。一組鄰邊相等的矩形是正方形,一個內(nèi)角是直角的菱形是正方形。
梯形:一組對邊平行而另一組對邊不平行的四邊形。一組對邊平行而另一組對邊不平行的四邊形是梯形。等腰梯形:兩條腰相等的梯形。同一底上的兩個內(nèi)角相等,對角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個內(nèi)角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內(nèi),由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內(nèi)角和等于(n-2)×180
多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和都等于360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內(nèi),一個圖形繞某個點旋轉180°,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
八年級數(shù)學復習資料
22.5等腰梯形
1.等腰梯形性質定理1:等腰梯形在同一底商的兩個內(nèi)角相等
2.性質定理2.:等腰梯形的兩條對角線相等
3.等腰梯形判定定理1:在同一底邊上的兩個內(nèi)角相等的梯形是等腰梯形
4.判定定理2:對角線相等的梯形是等腰梯形
22.6三角形、梯形的中位線
1.聯(lián)結三角形兩邊中點的線段叫做三角形的中位線
2.三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半
3.聯(lián)結梯形兩腰中點的線段叫做梯形的中位線
4.梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半
22.7平面向量
1.規(guī)定了方向的線段叫做有向線段,有向線段的方向是從一點到另一點的指向,這時線段的兩個端點有順序,我們把前一點叫做起點,另一點叫做終點,畫圖時在終點處畫上箭頭表示它的方向
2.既有大小。又有方向的量叫做向量,向量的大小也叫做向量的長度(或向量的模)
3.方向相同且長度相等的兩個向量叫做相等的量
4.方向相反且長度相等的兩個向量叫做互為相反向量
5.方向相同或相反的兩個向量叫做平行向量
22.8平面向量的加法
1.求兩個向量的和向量的運算叫做向量的加法
2.求不平行的兩個向量的和向量時,只要把第二個向量與第一個向量收尾相接,那么以第一個向量的起點為起點、第二個向量的終點為終點的向量就是和向量,這樣的規(guī)定叫做向量加法的三角形法則
3.一般地,我們把長度為零的向量叫做零向量
4.向量的加法滿足交換律、結合律
22.9平面向量的減法
1.已知兩個向量的和及其中一個向量,求另一個向量的運算叫做向量的減法
2.在平面內(nèi)任取一點,以這點為公共起點作出這兩個向量,那么它們的差向量是以減向量的終點為起點、被減向量的終點為終點的向量;求兩個向量的差向量的規(guī)定叫做向量減法的三角形法則
3.減去一個向量等于加上這個向量的相反向量
4.向量加法的平行四邊形法則