初二數(shù)學期末考試三角形重點知識歸納整理
很快就是期末考了,同學們的數(shù)學復習成什么樣子了啊?今天小編想和同學們一起學習的是關于初二期末數(shù)學三角形重點知識歸納,希望可以幫助到同學們更好地學習。
三角形知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊.
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高.
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線.
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性.
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對 角線.
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用 多邊形覆蓋平面。
13.公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等于和它不相鄰的兩個內角的和.
性質2:三角形的一個外角大于任何一個和它不相鄰的內角.
⑶多邊形內角和公式:n邊形的內角和等于(n-1)180°
⑷多邊形的外角和:多邊形的外角和為360°.
⑸多邊形對角線的條數(shù):
①從n邊形的一個頂點出發(fā)可以引(n-3)?條對角線,把多邊形分成(n-2)個三角形.
②n邊形共有(n(n-3))/2條對角線.
全等三角形
知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形.
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點.
⑷對應邊:全等三角形中互相重合的邊叫做對應邊.
⑸對應角:全等三角形中互相重合的角叫做對應角.
2.基本性質:
⑴三角形的穩(wěn)定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩(wěn)定性.
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等.
3.全等三角形的判定定理:
⑴邊邊邊(SSS):三邊對應相等的兩個三角形全等.
⑵邊角邊(SAS):兩邊和它們的夾角對應相等的兩個三角形全等.
⑶角邊角(ASA):兩角和它們的夾邊對應相等的兩個三角形全等.
⑷角角邊(AAS):兩角和其中一個角的對邊對應相等的兩個三角形全等.
⑸斜邊、直角邊(HL):斜邊和一條直角邊對應相等的兩個直角三角形全等.
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等.
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上.
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證.
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程.
初二數(shù)學期末考試三角形重點知識歸納整理相關文章: