六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>備考資料>

人教版初中數學知識點最新

時間: 淑燕0 分享

數學無時無處不存在,我們將數學使用在生活中,為我們的生活提供了很大的便利,下面是小編為大家整理的人教版初中數學知識點,歡迎閱讀,希望能幫助到大家!

初中數學知識點

絕對值

⒈絕對值的幾何定義

一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。

2.絕對值的代數定義

⑴一個正數的絕對值是它本身;⑵一個負數的絕對值是它的相反數;⑶0的絕對值是0.

可用字母表示為:

①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可歸納為①:a≥0,<═>|a|=a(非負數的絕對值等于本身;絕對值等于本身的數是非負數。)②a≤0,<═>|a|=-a(非正數的絕對值等于其相反數;絕對值等于其相反數的數是非正數。)經典考題

如數軸所示,化簡下列各數

|a|,|b|,|c|,|a-b|,|a-c|,|b+c|

解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

3.絕對值的性質

任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;

⑵一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;

⑶任何數的絕對值都不小于原數。即:|a|≥a;

⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;

⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;

⑺若幾個數的絕對值的和等于0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。

(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)

人教版初中數學知識點

第一章有理數

一、知識框架

二、知識概念

1.有理數:

(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②

2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那么 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,并把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運算法則:先乘方,后乘除,最后加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題.

體驗數學發(fā)展的一個重要原因是生活實際的需要.激發(fā)學生學習數學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分體現學生學習的主體性地位。

第二章整式的加減

一.知識框架

二.知識概念

1.單項式:在代數式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1. 理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯系。

2. 理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。

3. 理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合并同類項、去括號的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關系,并用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。

第三章一元一次方程

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.

2.一元一次方程的標準形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數化為1 …… (檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:………… 多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法: ………… 多用于“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,

S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

初中數學知識點總結

1.數軸

(1)數軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數軸.

數軸的三要素:原點,單位長度,正方向。

(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數.(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數.)

(3)用數軸比較大?。阂话銇碚f,當數軸方向朝右時,右邊的數總比左邊的數大。

重點知識:

初中數學第一課,認識正數與負數!新初一的來~

2.相反數

(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.

(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。

(3)多重符號的化簡:與“+”個數無關,有奇數個“﹣”號結果為負,有偶數個“﹣”號,結果為正。

(4)規(guī)律方法總結:求一個數的相反數的方法就是在這個數的前邊添加“﹣”,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。

3.絕對值

1.概念:數軸上某個數與原點的距離叫做這個數的絕對值。

①互為相反數的兩個數絕對值相等;

②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.

③有理數的絕對值都是非負數.

2.如果用字母a表示有理數,則數a

絕對值要由字母a本身的取值來確定:

①當a是正有理數時,a的絕對值是它本身a;

②當a是負有理數時,a的絕對值是它的相反數﹣a;

③當a是零時,a的絕對值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

重點知識:

初中數學第二課,有理數的相關知識!新初一的來~

4.有理數大小比較

1.有理數的大小比較

比較有理數的大小可以利用數軸,他們從左到有的順序,即從大到小的順序(在數軸上表示的兩個有理數,右邊的數總比左邊的數大);也可以利用數的性質比較異號兩數及0的大小,利用絕對值比較兩個負數的大小。

2.有理數大小比較的法則:

①正數都大于0;

②負數都小于0;

③正數大于一切負數;

④兩個負數,絕對值大的其值反而小。

規(guī)律方法·有理數大小比較的三種方法:

(1)法則比較:正數都大于0,負數都小于0,正數大于一切負數.兩個負數比較大小,絕對值大的反而小.

(2)數軸比較:在數軸上右邊的點表示的數大于左邊的點表示的數.

(3)作差比較:

若a﹣b>0,則a>b;

若a﹣b<0,則a

若a﹣b=0,則a=b.

5.有理數的減法

有理數減法法則

減去一個數,等于加上這個數的相反數。 即:a﹣b=a+(﹣b)

方法指引:

①在進行減法運算時,首先弄清減數的符號;

②將有理數轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號); 二是減數的性質符號(減數變相反數);

注意:在有理數減法運算時,被減數與減數的位置不能隨意交換;因為減法沒有交換律。

減法法則不能與加法法則類比,0加任何數都不變,0減任何數應依法則進行計算。

6.有理數的乘法

(1)有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。

(2)任何數同零相乘,都得0。

(3)多個有理數相乘的法則:

①幾個不等于0的數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正.

②幾個數相乘,有一個因數為0,積就為0。

(4)方法指引

①運用乘法法則,先確定符號,再把絕對值相乘.

②多個因數相乘,看0因數和積的符號當先,這樣做使運算既準確又簡單.

7.有理數的混合運算

1.有理數混合運算順序:先算乘方,再算乘除,最后算加減;

同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內的運算。

2.進行有理數的混合運算時,注意各個運算律的運用,使運算過程得到簡化。

有理數混合運算的四種運算技巧:

(1)轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數轉化為分數進行約分計算.

(2)湊整法:在加減混合運算中,通常將和為零的兩個數,分母相同的兩個數,和為整數的兩個數,乘積為整數的兩個數分別結合為一組求解.

(3)分拆法:先將帶分數分拆成一個整數與一個真分數的和的形式,然后進行計算.

(4)巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.

8.科學記數法—表示較大的數

1.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,n是正整數,這種記數法叫做科學記數法。

(科學記數法形式:a×10n,其中1≤a<10,n為正整數)

2.規(guī)律方法總結

①科學記數法中a的要求和10的指數n的表示規(guī)律為關鍵,由于10的指數比原來的整數位數少1;按此規(guī)律,先數一下原數的整數位數,即可求出10的指數n。

②記數法要求是大于10的數可用科學記數法表示,實質上絕對值大于10的負數同樣可用此法表示,只是前面多一個負號.

重點知識:

初中數學第八課:科學計數法,新初一的來~

9.代數式求值

(1)代數式的值:用數值代替代數式里的字母,計算后所得的結果叫做代數式的值。

(2)代數式的求值:求代數式的值可以直接代入、計算.如果給出的代數式可以化簡,要先化簡再求值。

題型簡單總結以下三種:

①已知條件不化簡,所給代數式化簡;

②已知條件化簡,所給代數式不化簡;

③已知條件和所給代數式都要化簡.

10.規(guī)律型:圖形的變化類

首先應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解。探尋規(guī)律要認真觀察、仔細思考,善用聯想來解決這類問題。

11.等式的性質

1.等式的性質

性質1 等式兩邊加同一個數(或式子)結果仍得等式;

性質2 等式兩邊乘同一個數或除以一個不為零的數,結果仍得等式。

2.利用等式的性質解方程

利用等式的性質對方程進行變形,使方程的形式向x=a的形式轉化.

應用時要注意把握兩關:

①怎樣變形;

②依據哪一條,變形時只有做到步步有據,才能保證是正確的.

新初一第二章知識點總結:整式的加減,為孩子收藏!

12.一元一次方程的解

定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右兩邊相等。

13.解一元一次方程

1.解一元一次方程的一般步驟

去分母、去括號、移項、合并同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;

若既有分母又有括號,且括號外的項在乘括號內各項后能消去分母,就先去括號。

3.在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。

使方程逐漸轉化為ax=b的最簡形式體現化歸思想。

將ax=b系數化為1時,要準確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要準確判斷符號,a、b同號x為正,a、b異號x為負。

14.一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規(guī)律型問題;

(2)數字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總量);

(5)行程問題(路程=速度×時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).

2.利用方程解決實際問題的基本思路

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然后用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.

(2)設:設未知數(x),根據實際情況,可設直接未知數(問什么設什么),也可設間接未知數.

(3)列:根據等量關系列出方程.

(4)解:解方程,求得未知數的值.

(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.

15.正方體相對兩個面上的文字

(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象.

(2)從實物出發(fā),結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面.

16.直線、射線、線段

(1)直線、射線、線段的表示方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

17.兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

18.角的概念

(1)角的定義:有公共端點是兩條射線組成的圖形叫做角,其中這個公共端點是角的頂點,這兩條射線是角的兩條邊。

(2)角的表示方法:角可以用一個大寫字母表示,也可以用三個大寫字母表示.其中頂點字母要寫在中間,唯有在頂點處只有一個角的情況,才可用頂點處的一個字母來記這個角,否則分不清這個字母究竟表示哪個角.角還可以用一個希臘字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯數字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一條射線繞它的端點旋轉而形成的圖形,當始邊與終邊成一條直線時形成平角,當始 邊與終邊旋轉重合時,形成周角。

(4)角的度量:度、分、秒是常用的角的度量單位.1度=60分,即1°=60′,1分=60秒,即1′=60″。

19.角平分線的定義

從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線。

①∠AOB是∠AOC和∠BOC的和,記作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,記作:∠AOC=∠AOB﹣∠BOC。

②若射線OC是∠AOB的三等分線,則∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的運算

(1)度、分、秒的加減運算。

在進行度分秒的加減時,要將度與度,分與分,秒與秒相加減,分秒相加,逢60要進位,相減時,要借1化60。

(2)度、分、秒的乘除運算

①乘法:度、分、秒分別相乘,結果逢60要進位。

②除法:度、分、秒分別去除,把每一次的余數化作下一級單位進一步去除。

21.由三視圖判斷幾何體

(1)由三視圖想象幾何體的形狀,首先,應分別根據主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,然后綜合起來考慮整體形狀。

(2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進行分析:

①根據主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,以及幾何體的長、寬、高;

②從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線;

③熟記一些簡單的幾何體的三視圖對復雜幾何體的想象會有幫助;

④利用由三視圖畫幾何體與有幾何體畫三視圖的互逆過程,反復練習,不斷總結方法。

初中數學怎么學

正如我們把一份試卷劃分成基礎題,中檔題和壓軸題。初中數學的學習也可以分成三個層次。

第一層次是學數學知識,建立基本初中數學的知識框架,并會基本運用。做到這點,那么基礎題都不成問題。在建立基本初中數學的知識框架,基本概念一定要清晰,尤其要注意易錯點。相信很多初中學生印象深刻的是在初一學有理數和實數的這兩章的概念時,總是不小心就掉進出題老師挖的坑里。舉個例,填空題根號16的平方根,不少學生后寫4或正負4,關鍵是自己檢查還檢查不出了,很多學生會忽略16自帶根號,正確的做法是先運算16的算數平方根得4,再算4的平方根得正負2。我想任何一科學科都不能忽略基礎。如建高樓大廈,只有你的基礎打得夠扎實,你才能建更高的樓層,而不怕大風大雨。

第二層次是融會貫通知識點,學會綜合運用。這點說難不難,說易也不易。大家會發(fā)現每個學校都是成績處于平均水平的人是最多的,往高分走人數會逐漸減少,往低分走人數也會減少,基本處于正態(tài)分布曲線。大家會發(fā)現只要對知識理解透徹,再加上訓練達到靈活運用的程度,基本上中檔題是很容易的。對知識的融會貫通,并不是簡單的反復刷題就可以做到的,而是要做針對性的匹配練習與變式思考題。這就是為什么有些學霸可以用一樣的練習時間,輕松突破125分。當然,130的界限又需要達到另一個層次了。

第三層次是拓展重難點,總結方法,變式訓練邏輯思維。這個層次第一要點是拓展好同步課程的重難點,如初二的一次函數課內知識有兩直線平行,斜率K相等,但是可以拓展兩直線垂直,斜率之積為負一。這點在初三的直角三角形存在性問題的壓軸題型會有運用。說到壓軸題型,學霸和普通學生的區(qū)別是,普通學生就知道勾股逆定理和直接算90度角的直接知識點的思路,而學霸會總結基本的知識點出發(fā)的勾股定理結合距離公式,而推導90度角還有一垂直(如直徑所對圓周角,相切等轉化成圓問題),兩垂直(轉化為函數的斜率之積為負一,或兩垂直相似等)三垂直(三垂直相似,三垂直全等逆向證角等)。壓軸題題型的方法總結只是第二步。你想從學霸突破成為學神的關鍵是掌握學習的邏輯思維。

數學是一科具有嚴謹的系統(tǒng)的邏輯思維與分析的科學。最明顯的是從小學剛升初一的學生身上,你會發(fā)現在小學通過勤奮,數學總能考接近滿分的一群學生中,上了初中后,數學開始明顯有分層了。在初中有一句話,叫初一不上不下,初二兩級分化。原因很簡單,初二數學開始接觸更高層次的幾何綜合及相關輔助線了。幾何綜合對思路分析,過程推導的邏輯思維要求更高,而輔助線對學生的幾何構造補充能力提出了更高要求。

所以,你會發(fā)現如果你掌握了壓軸題型的思路方法還不夠,必須去做變式訓練去鍛煉自己的邏輯思維。如果你是定向的邏輯思維,你會發(fā)現一旦開始的思路不對,你就會卡思路,甚至鉆牛角尖出不來。如果你是發(fā)散性的思維,你會嘗試最有可能的思路,錯了很快去試另一個可能性。而很多人的思維模式由于天賦和從小培養(yǎng)環(huán)境的影響,思維能力有一定的基礎,而初中生正是思維活躍高速發(fā)展的時期,所以應該多去鍛煉。

最后,總結一句話就是學好初中數學一要扎實基礎以便建高樓,二融會貫通懂綜合運用,三學會方法更要變式訓練邏輯思維。

人教版初中數學知識點最新相關文章

初三數學知識點歸納人教版

新人教版初中數學復習資料

八年級數學知識點整理歸納

初一數學上冊知識點歸納

初一數學人教版知識點歸納

人教版初中數學總復習資料有哪些

初二數學上冊知識點總結

初一人教版數學上冊知識點總結歸納

初一數學上冊知識點匯總歸納

七年級數學知識點大全

人教版初中數學知識點最新

數學無時無處不存在,我們將數學使用在生活中,為我們的生活提供了很大的便利,下面是小編為大家整理的人教版初中數學知識點,歡迎閱讀,希望能幫助到大家!初中數學知識點絕對值⒈絕對值的幾何定義一般地,數軸上表
推薦度:
點擊下載文檔文檔為doc格式
1076805