一元二次方程復(fù)習(xí)提綱
數(shù)學(xué)是初中學(xué)習(xí)中的一個重要科目,是三大主科之一,但是有很多同學(xué)的數(shù)學(xué)成績并不理想,以下是小編給大家整理的一元二次方程復(fù)習(xí)提綱,希望對大家有所幫助,歡迎閱讀!
一元二次方程復(fù)習(xí)提綱
一、目標(biāo)與要求
1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應(yīng)用一元二次方程概念解決一些簡單題目。
2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實際問題建立一元二次方程的數(shù)學(xué)模型的方法,應(yīng)用熟練掌握以上知識解決問題。
二、重點
1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題。
2.判定一個數(shù)是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次──轉(zhuǎn)化的數(shù)學(xué)思想。
5.利用實際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個問題.
三、難點
1.一元二次方程配方法解題。
2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
3.用公式法解一元二次方程時的討論。
4.通過根據(jù)平方根的意義解形如x2=n,知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程實際問題的數(shù)學(xué)模型,方程解與實際問題解的區(qū)別。
6.由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的根。
7.知識框架
四、知識點、概念總結(jié)
1.一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四個特點:
(1)含有一個未知數(shù);
(2)且未知數(shù)次數(shù)次數(shù)是2;
(3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程。
(4)將方程化為一般形式:ax2+bx+c=0時,應(yīng)滿足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。
數(shù)學(xué)學(xué)習(xí)技巧
1.求教與自學(xué)相結(jié)合
在學(xué)習(xí)過程中,即要爭取教師的指導(dǎo)和幫助,但是又不能過分依賴教師, 必須自己主動地去學(xué)習(xí)、去探索、去獲取,應(yīng)該在自己認真學(xué)習(xí)和研究的基礎(chǔ)上去尋求教師和同學(xué)的幫助。
2.學(xué)習(xí)與思考相結(jié)合
在學(xué)習(xí)過程中,對課本的內(nèi)容要認真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊含于推導(dǎo)過程中的數(shù)學(xué)思想和方法。在解決問題時,要盡量采用不同的途徑和方法,要克服那種死守書本、機械呆板、不知變通的學(xué)習(xí)方法。
3.學(xué)用結(jié)合,勤于實踐
在學(xué)習(xí)過程中,要準確地掌握抽象概念的本質(zhì)含義,了解從實際模型中抽象為理論的演變過程。對所學(xué)理論知識,要在更大范圍內(nèi)尋求它的具體實例,使之具體化,盡量將所學(xué)的理論知識和思維方法應(yīng)用于實踐。
4.博觀約取,由博返約
課本是獲得知識的主要來源,但不是唯一的來源。在學(xué)習(xí)過程中,除了認真研究課本以外,還要閱讀有關(guān)的課外資料,來擴大知識領(lǐng)域。同時在廣泛閱讀的基礎(chǔ)上,進行認真研究,掌握其知識結(jié)構(gòu)。
5.既有模仿,又有創(chuàng)新
模仿是數(shù)學(xué)學(xué)習(xí)中不可缺少的學(xué)習(xí)方法,但是決不能機械地模仿,應(yīng)該在消化理解的基礎(chǔ)上,開動腦筋,提出自己的見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。
6.及時復(fù)習(xí)增強記憶
課堂上學(xué)習(xí)的內(nèi)容,必須當(dāng)天消化,要先復(fù)習(xí),后做練習(xí),復(fù)習(xí)工作必須經(jīng)常進行,每一單元結(jié)束后,應(yīng)將所學(xué)知識進行概括整理,使之系統(tǒng)化、深刻化。
7.總結(jié)學(xué)習(xí)經(jīng)驗,評價學(xué)習(xí)效果
學(xué)習(xí)中的總結(jié)和評價有利于知識體系的建立、解題規(guī)律的掌握、學(xué)習(xí)方法與態(tài)度的調(diào)整和評判能力的提高。在學(xué)習(xí)過程中,應(yīng)注意總結(jié)聽課、閱讀和解題中的收獲和體會。
提高數(shù)學(xué)成績訣竅方法
1.要重視計算
做數(shù)學(xué)題就是要注重計算,很多孩子成績丟分在計算上,解題步驟沒有錯,但是計算的過程中出現(xiàn)失誤,導(dǎo)致丟分,影響整體成績,所以要重視計算的作用,初一階段剛開學(xué)就會學(xué)到有理數(shù),絕對值,倒數(shù),相反數(shù),一元一次方程,單項式和多項式等基本的計算問題,每一個知識點都脫離不了計算的考察。整式,方程,不等式等后續(xù)重要知識點都基于有理數(shù)的計算。后續(xù)的分式計算更凸顯了孩子的計算問題。所以要想提高數(shù)學(xué)成績,一定要重視計算。
2.細節(jié)決定成敗
我們在考試以后會發(fā)現(xiàn)有很多不應(yīng)該做錯的題,因為大意失了分數(shù),所以要想提高數(shù)學(xué)成績,一定要注意細節(jié),在考試的過程中不該丟的不能丟,分分計較,做到顆粒歸倉。解題時即使思路正確,不注意細節(jié)也能丟分??荚嚪址直容^,每一分都代表了一個人的素質(zhì)和水平。這就是細節(jié)決定成敗。
3.善于發(fā)現(xiàn)數(shù)學(xué)規(guī)律
要想提高數(shù)學(xué)成績,在做數(shù)學(xué)題的過程中要善于發(fā)現(xiàn)規(guī)律。不要總是硬套公式,可以嘗試一下思維的轉(zhuǎn)換,這樣可能給自己帶了不一樣的轉(zhuǎn)機,其實數(shù)學(xué)和其他的科目是一樣,就比如語文一樣的話,可以用其他的話代替,但是意思并沒有轉(zhuǎn)變,數(shù)學(xué)的公式也是一樣,最終的答案是一個,不過你可以用其他的方法進行解答,所以善于發(fā)現(xiàn)數(shù)學(xué)的解題規(guī)律,轉(zhuǎn)變思路也是提高數(shù)學(xué)成績的一條有效途徑。
4.高水平復(fù)習(xí)很重要
要想提高數(shù)學(xué)成績,在考試前一定要有高水平高效率的復(fù)習(xí)。一道題,剛開始你不熟悉,那么,你需要做十遍甚至更多遍,把整個題目做到滾瓜爛熟。這個時候,如果你還在不斷地重復(fù)做這道題,那么就是低水平重復(fù),高手們會當(dāng)這道題熟悉了,他就開始放棄了,把大把時間拿來,去攻克自己不熟悉的題目,不斷地把陌生轉(zhuǎn)化為熟悉。他們也在重復(fù),但是,是高水平重復(fù)。
一元二次方程復(fù)習(xí)提綱相關(guān)文章:
★ 初三上冊數(shù)學(xué)《一元二次方程》知識點復(fù)習(xí)資料
★ 人教版九年級數(shù)學(xué)一元二次方程與二次函數(shù)復(fù)習(xí)資料
★ 初中數(shù)學(xué)一元二次方程復(fù)習(xí)教案
★ 初中數(shù)學(xué)一元二次方程復(fù)習(xí)題
★ 一元二次方程初三數(shù)學(xué)單元試題附答案詳解
★ 中考數(shù)學(xué)復(fù)習(xí)39個知識點
★ 一元二次方程初三數(shù)學(xué)單元試題附答案詳解(2)