高中數(shù)學(xué)知識點講解
數(shù)學(xué)至多是一套打滿結(jié)的繩索,你必須耐心地解開一個又一個的死結(jié),終有一天你一定能解開所有的結(jié)。學(xué)數(shù)學(xué)最重要的就是要善于思考。下面是小編整理的高中數(shù)學(xué)知識點,歡迎大家閱讀學(xué)習(xí)!
高中數(shù)學(xué)知識點講解
復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道基礎(chǔ)題和一道中檔題,經(jīng)常與三角、解析幾何、方程、不等式等知識綜合.本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運算.方程、方程組,數(shù)形結(jié)合,分域討論,等價轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的體現(xiàn).而復(fù)數(shù)是代數(shù),三角,解析幾何知識,相互轉(zhuǎn)化的樞紐,這對拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題能力是有益的.數(shù)、式的運算和解方程,方程組,不等式是學(xué)好本章必須具有的基本技能.簡化運算的意識也應(yīng)進一步加強.
在本章學(xué)習(xí)結(jié)束時,應(yīng)該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的知識還有待于進一步的研究.
1.知識網(wǎng)絡(luò)圖
復(fù)數(shù)知識點網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點
(1)復(fù)數(shù)的向量表示法的運算.對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應(yīng)認真體會復(fù)數(shù)向量運算的幾何意義,對其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開方.有部分學(xué)生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應(yīng)對此認真地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認真加以體會.
3.復(fù)數(shù)中的重點
(1)理解好復(fù)數(shù)的概念,弄清實數(shù)、虛數(shù)、純虛數(shù)的不同點.
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運算,在運算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運算,特別是復(fù)數(shù)運算的幾何意義更是重點內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項方程的解法.
高中數(shù)學(xué)知識點提綱
集合
一、集合概念
(1)集合中元素的特征:確定性,互異性,無序性。
(2)集合與元素的關(guān)系用符號=表示。
(3)常用數(shù)集的符號表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實數(shù)集。
(4)集合的表示法:列舉法,描述法,韋恩圖。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
函數(shù)
一、映射與函數(shù):
(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷方法:①對應(yīng)法則;②定義域(兩點必須同時具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問題的定義域要分類討論;
②對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;
⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。
三、函數(shù)的性質(zhì):
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱
y=f(x)→y=-f(x),關(guān)于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;
點擊查看:高中數(shù)學(xué)知識點
五、反函數(shù):
(1)定義:
(2)函數(shù)存在反函數(shù)的條件:
(3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
七、常用的初等函數(shù):
(1)一元一次函數(shù):
(2)一元二次函數(shù):
一般式
兩點式
頂點式
二次函數(shù)求最值問題:首先要采用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區(qū)間也固定。如:
(2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內(nèi),何時在區(qū)間之外。
(3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).
等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根
注意:若在閉區(qū)間討論方程有實數(shù)解的情況,可先利用在開區(qū)間上實根分布的情況,得出結(jié)果,在令和檢查端點的情況。
(3)反比例函數(shù):
(4)指數(shù)函數(shù):
指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過點(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
(5)對數(shù)函數(shù):
對數(shù)函數(shù):y=(a>o,a≠1)圖象恒過點(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
注意:
(1)比較兩個指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。
高中數(shù)學(xué)知識點全總結(jié)
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
高中數(shù)學(xué)學(xué)習(xí)心得
數(shù)學(xué)是一們基礎(chǔ)學(xué)科,我們從小就開始接觸到它。現(xiàn)在我們已經(jīng)步入高中,由于高中數(shù)學(xué)對知識的難度、深度、廣度要求更高,有一部分同學(xué)由于不適應(yīng)這種變化,數(shù)學(xué)成績總是不如人意。甚至產(chǎn)生這樣的困惑:“我在初中時數(shù)學(xué)成績很好,可現(xiàn)在怎么了?”其實,學(xué)習(xí)是一個不斷接收新知識的過程。正是由于你在進入高中后學(xué)習(xí)方法或學(xué)習(xí)態(tài)度的影響,才會造成學(xué)得累死而成績不好的后果。那么,究竟該如何學(xué)好高中數(shù)學(xué)呢?以下我談?wù)勎业母咧袛?shù)學(xué)學(xué)習(xí)心得。
一、認清學(xué)習(xí)的能力狀態(tài)。
1、心理素質(zhì)。
我們在高中學(xué)習(xí)環(huán)境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當(dāng)我們面對困難時不應(yīng)產(chǎn)生畏懼感,面對失敗時不應(yīng)灰心喪氣,而要勇于正視自己,及時作出總結(jié)教訓(xùn),改變學(xué)習(xí)方法。
2、學(xué)習(xí)方式、習(xí)慣的反思與認識。
(1)學(xué)習(xí)的主動性。我們在進入高中以后,不能還像初中時那樣有很強的依賴心理,不訂學(xué)習(xí)計劃,坐等上課,課前不預(yù)習(xí),上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動學(xué)習(xí)。(2)學(xué)習(xí)的條理性。我們在每學(xué)習(xí)一課內(nèi)容時,要學(xué)會將知識有條理地分為若干類,剖析概念的內(nèi)涵外延,重點難點要突出。不要忙于記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結(jié),而忙于套著題型趕作業(yè),對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3)忽視基礎(chǔ)。在我身邊,常有些“自我感覺良好”的同學(xué),忽視基礎(chǔ)知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠,重“量”而輕“質(zhì)”,陷入題海,往往在考試中不是演算錯誤就是中途“卡殼”。(4)不良習(xí)慣。主要有對答案,卷面書寫不工整,格式不規(guī)范,不相信自己的結(jié)論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養(yǎng)成一種依賴于老師解說的心理,做作業(yè)不講究效率,學(xué)習(xí)效率不高。
二、努力提高自己的學(xué)習(xí)能力。
1、抓要點提高學(xué)習(xí)效率。
(1)抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學(xué)習(xí)的根本依據(jù)。教學(xué)是活的,思維也是活的,學(xué)習(xí)能力是隨著知識的積累而同時形成的。我們要通過老師教學(xué),理解所學(xué)內(nèi)容在教材中的地位,并將前后知識聯(lián)系起來,把握教材,才能掌握學(xué)習(xí)的主動性。(2)抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3)抓思維訓(xùn)練。數(shù)學(xué)的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓(xùn)練中,要注重一個思維的過程,學(xué)習(xí)能力是在不斷運用中才能培養(yǎng)出來的。(5)抓45分鐘課堂效率。我們學(xué)習(xí)的大部分時間都在學(xué)校,如果不能很好地抓住課堂時間,而寄希望于課外去補,則會使學(xué)習(xí)效率大打折扣。
高中數(shù)學(xué)知識點講解相關(guān)文章:
★ 高中數(shù)學(xué)知識點全總結(jié)最全版