六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>備考資料>

小升初數(shù)學必考知識點歸納

時間: 航就0 分享

在復習數(shù)學中,盡量不貪難題、怪題,而是首先將知識整理成不同的體系、類型,每一類型都選做一些典型的由淺入深的不同層次例題,不僅達到會做的程度,還應在深刻理解的基礎上記住突破點。下面小編給大家?guī)硇∩鯏?shù)學必考知識點歸納,希望大家喜歡!

小升初數(shù)學必考知識點歸納總結

數(shù)量關系計算公式

單價×數(shù)量=總價 2、單產量×數(shù)量=總產量

速度×時間=路程 4、工效×時間=工作總量

加數(shù)+加數(shù)=和 一個加數(shù)=和+另一個加數(shù)

被減數(shù)-減數(shù)=差 減數(shù)=被減數(shù)-差 被減數(shù)=減數(shù)+差

因數(shù)×因數(shù)=積 一個因數(shù)=積÷另一個因數(shù)

被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù)

長度單位:

1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

面積單位:

1平方千米=100公頃 1公頃=10000平方米

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

1畝=666.666平方米。

體積單位

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1升=1立方分米=1000毫升 1毫升=1立方厘米

重量單位

1噸=1000千克 1千克= 1000克= 1公斤= 1市斤

什么叫比:兩個數(shù)相除就叫做兩個數(shù)的比。如:2÷5或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(shù)(0除外),比值不變。

什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

比例的基本性質:在比例里,兩外項之積等于兩內項之積。

解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

正比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y

反比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

百分數(shù)

百分數(shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。百分數(shù)也叫做百分率或百分比。

把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號。其實,把小數(shù)化成百分數(shù),只要把這個小數(shù)乘以100%就行了。把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。

把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。其實,把分數(shù)化成百分數(shù),要先把分數(shù)化成小數(shù)后,再乘以100%就行了。

把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。

要學會把小數(shù)化成分數(shù)和把分數(shù)化成小數(shù)的化發(fā)。

倍數(shù)與約數(shù)

最大公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。公因數(shù)有有限個。其中最大的一個叫做這幾個數(shù)的最大公約數(shù)。

最小公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù)。公倍數(shù)有無限個。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。

互質數(shù): 公約數(shù)只有1的兩個數(shù),叫做互質數(shù)。相臨的兩個數(shù)一定互質。兩個連續(xù)奇數(shù)一定互質。1和任何數(shù)互質。

通分:把異分母分數(shù)的分別化成和原來分數(shù)相等的同分母的分數(shù),叫做通分。(通分用最小公倍數(shù))

約分:把一個分數(shù)的分子、分母同時除以公約數(shù),分數(shù)值不變,這個過程叫約分。

最簡分數(shù):分子、分母是互質數(shù)的分數(shù),叫做最簡分數(shù)。分數(shù)計算到最后,得數(shù)必須化成最簡分數(shù)。

質數(shù)(素數(shù)):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)(或素數(shù))。

合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質數(shù),也不是合數(shù)。

質因數(shù):如果一個質數(shù)是某個數(shù)的因數(shù),那么這個質數(shù)就是這個數(shù)的質因數(shù)。

分解質因數(shù):把一個合數(shù)用質因數(shù)相成的方式表示出來叫做分解質因數(shù)。

倍數(shù)特征:

2的倍數(shù)的特征:各位是0,2,4,6,8。

3(或9)的倍數(shù)的特征:各個數(shù)位上的數(shù)之和是3(或9)的倍數(shù)。

5的倍數(shù)的特征:各位是0,5。

4(或25)的倍數(shù)的特征:末2位是4(或25)的倍數(shù)。

8(或125)的倍數(shù)的特征:末3位是8(或125)的倍數(shù)。

7(11或13)的倍數(shù)的特征:末3位與其余各位之差(大-小)是7(11或13)的倍數(shù)。

17(或59)的倍數(shù)的特征:末3位與其余各位3倍之差(大-小)是17(或59)的倍數(shù)。

19(或53)的倍數(shù)的特征:末3位與其余各位7倍之差(大-小)是19(或53)的倍數(shù)。

23(或29)的倍數(shù)的特征:末4位與其余各位5倍之差(大-小)是23(或29)的倍數(shù)。

倍數(shù)關系的兩個數(shù),最大公約數(shù)為較小數(shù),最小公倍數(shù)為較大數(shù)。

互質關系的兩個數(shù),最大公約數(shù)為1,最小公倍數(shù)為乘積。

兩個數(shù)分別除以他們的最大公約數(shù),所得商互質。

兩個數(shù)的與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。

兩個數(shù)的公約數(shù)一定是這兩個數(shù)最大公約數(shù)的約數(shù)。

1既不是質數(shù)也不是合數(shù)。

用6去除大于3的質數(shù),結果一定是1或5。

拓展閱讀:小升初數(shù)學應用題答題技巧

1、簡單應用題

(1) 簡單應用題:

只含有一種基本數(shù)量關系,或用一步運算解答的應用題,通常叫做簡單應用題。

(2) 解題步驟:

a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。

b 選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運算的含義,分析數(shù)量關系,確定算法,進行解答并標明正確的單位名稱。

c 檢驗:就是根據(jù)應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。

d 答案:根據(jù)計算的結果,先口答,逐步過渡到筆答。

(3) 解答加法應用題:

a 求總數(shù)的應用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。

b 求比一個數(shù)多幾的數(shù)應用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。

(4) 解答減法應用題:

a 求剩余的應用題:從已知數(shù)中去掉一部分,求剩下的部分。

b 求兩個數(shù)相差的多少的應用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。

c 求比一個數(shù)少幾的數(shù)的應用題:已知甲數(shù)是多少,,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。

(5) 解答乘法應用題:

a 求相同加數(shù)和的應用題:已知相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。

b 求一個數(shù)的幾倍是多少的應用題:已知一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。

(6) 解答除法應用題:

a 把一個數(shù)平均分成幾份,求每一份是多少的應用題:已知一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是多少。

b 求一個數(shù)里包含幾個另一個數(shù)的應用題:已知一個數(shù)和每份是多少,求可以分成幾份。

c 求一個數(shù)是另一個數(shù)的的幾倍的應用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。

d 已知一個數(shù)的幾倍是多少,求這個數(shù)的應用題。

(7)常見的數(shù)量關系:

總價= 單價×數(shù)量

路程= 速度×時間

工作總量=工作時間×工效

總產量=單產量×數(shù)量

2、復合應用題

(1)有兩個或兩個以上的基本數(shù)量關系組成的。

用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。

(2)含有三個已知條件的兩步計算的應用題。

求比兩個數(shù)的和多(少)幾個數(shù)的應用題。

比較兩數(shù)差與倍數(shù)關系的應用題。

(3)含有兩個已知條件的兩步計算的應用題。

已知兩數(shù)相差多少(或倍數(shù)關系)與其中一個數(shù),求兩個數(shù)的和(或差)。

已知兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少(或倍數(shù)關系)。

(4)解答連乘連除應用題。

(5)解答三步計算的應用題。

(6)解答小數(shù)計算的應用題:

小數(shù)計算的加法、減法、乘法和除法的應用題,他們的數(shù)量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。

3、典型應用題

具有獨特的結構特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。

(1)平均數(shù)問題:

平均數(shù)是等分除法的發(fā)展。

解題關鍵:在于確定總數(shù)量和與之相對應的總份數(shù)。

算術平均數(shù):已知幾個不相等的同類量和與之相對應的份數(shù),求平均每份是多少。數(shù)量關系式:數(shù)量之和÷數(shù)量的個數(shù)=算術平均數(shù)。

加權平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。

數(shù)量關系式 (部分平均數(shù)×權數(shù))的總和÷(權數(shù)的和)=加權平均數(shù)。

差額平均數(shù):是把各個大于或小于標準數(shù)的部分之和被總份數(shù)均分,求的是標準數(shù)與各數(shù)相差之和的平均數(shù)。

數(shù)量關系式:(大數(shù)-小數(shù))÷2=小數(shù)應得數(shù) 最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應給數(shù)

最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應得數(shù)。

例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。

分析:求汽車的平均速度同樣可以利用

公式。此題可以把甲地到乙地的路程設為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為100 ,所用的時間為,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為2 ÷ =75 (千米)

(2)歸一問題:

已知相互關聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。

根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。

根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。

一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!?/p>

兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一。”

正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結果的歸一問題。

反歸一問題:用等分除法求出“單一量”之后,再用除法計算結果的歸一問題。

解題關鍵:從已知的一組對應量中用等分除法求出一份的數(shù)量(單一量),然后以它為標準,根據(jù)題目的要求算出結果。

體積和表面積

三角形的面積=底高2。 公式 S= ah2

正方形的面積=邊長邊長 公式 S= a2

長方形的面積=長寬 公式 S= ab

平行四邊形的面積=底高 公式 S= ah

梯形的面積=(上底+下底)高2 公式 S=(a+b)h2

內角和:三角形的內角和=180度。

長方體的表面積=(長寬+長高+寬高 ) 2 公式:S=(ab+ac+bc)2

正方體的表面積=棱長棱長6 公式: S=6a2

長方體的體積=長寬高 公式:V = abh

長方體(或正方體)的體積=底面積高 公式:V = abh

正方體的體積=棱長棱長棱長 公式:V = a3

圓的周長=直徑 公式:L=r

圓的面積=半徑半徑 公式:S=r2

圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=rh

圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2r2

圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh

圓錐的體積=1/3底面積高。公式:V=1/3Sh

算術

1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。

2、加法結合律:a + b = b + a

3、乘法交換律:a b = b a

4、乘法結合律:a b c = a (b c)

5、乘法分配律:a b + a c = a b + c

6、除法的性質:a b c = a (b c)

7、除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變。 O除以任何不是O的數(shù)都得O。 簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

8、有余數(shù)的除法: 被除數(shù)=商除數(shù)+余數(shù)

方程、代數(shù)與等式

等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。

方程式:含有未知數(shù)的等式叫方程式。

一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有的算式并計算。

代數(shù): 代數(shù)就是用字母代替數(shù)。

代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x =ab+c

分數(shù)

分數(shù):把單位1平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。

分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。

分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。

分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。

分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。

分數(shù)的加、減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。

倒數(shù)的概念:1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù)。這兩個數(shù)互為倒數(shù)。1的倒數(shù)是1,0沒有倒數(shù)。

分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。

分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小

分數(shù)的除法則:除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)。

真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。

假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。

帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。

分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。

數(shù)學列方程解應用題必要步驟

列方程解應用題一般步驟:

①弄清題意,找出題中已知條件和所求問題。

②分析題意,找出題中等量關系式。

③用x表示未知數(shù)量,列出方程,解方程。

④檢驗是否正確,寫出答語 。

列方程解應用題關鍵是找出題中等量關系式。有應用題,等量關系式很明顯,直接可得到;有應用題等量關系式不明顯,要分析題意才能找出;有應用題等量關系式隱藏,如周長公式、面積公式、體積公式不會出現(xiàn)在題目中,所以熟記學過所有字母公式很重要。

小升初四大復習方法

小升初數(shù)學考試有以下幾個特點:時間短,題目多,計算量大,考得很靈活。因此,許多家長與孩子都無從下手,不知道在較短的時間內該如何備戰(zhàn)。想在小升初數(shù)學考試中取得高分,在備考時,必須要嚴格按照以下四步給孩子進行輔導:夯實基礎;提高拓展;精做精練;查漏補缺。

1、夯實基礎

基礎知識是整個數(shù)學知識體系中最根本的基石。學生在學校課堂一定要做到認真聽講,這直接關系到基礎的落實。另外還要歸納和梳理教材知識點,記清概念。特別是選擇題和填空題,要靠清晰的概念來明辨對錯,如果概念不清就會感覺模棱兩可,最終造成誤選。

2、提高拓展

在注重基礎知識訓練的同時,必須要分階段、有針對_的對孩子進行專題訓練,涉及的有關知識點要進行過關、強化訓練,做到知識點之間能夠融會貫通,不會出現(xiàn)混淆、張冠李戴的情況。

3、精做精練

精選幾套模擬試題,其中包括歷年聯(lián)考試題,從一月份開始要有計劃的給孩子練習。這些試卷的難度與聯(lián)考相仿,知識點的分布比較合理到位,這樣能夠使得整個知識體系得到優(yōu)化與完善,基礎與能力得到升華,速度得到提高,對知識的把握更為靈活。

在此階段訓練要讓孩子形成審題要慢,題意分析清楚后,再動手快做的習慣。另外提高做題速度和準確率也是復習要強化的訓練,聯(lián)考題量多時間緊,因此平時訓練要求孩子一步到位,一次算對。

4、查漏補缺

在做題的同時,會有許多錯題產生,整理、歸納、訂正錯題是必不可少,訂正比做題更加重要,對比錯解的過程和訂正后的正確過程,就能發(fā)現(xiàn)錯誤的原因。建議學生將各種測試卷中解錯的題目按選擇題、填空題和解答題放在一起比較,統(tǒng)計一下哪類題容易出錯,從而找出帶有共_的錯誤和不足,及時查漏補缺,才能將問題解決在考前。

小升初數(shù)學是在小升初考試中所占比例最重的科目,所以小升初數(shù)學的復習一定要注意以上幾個要點,爭取徹底掌握小升初數(shù)學考試的知識點,才能夠在小升初考試中脫穎而出。

小升初數(shù)學必考知識點歸納相關文章

小升初數(shù)學完全平方數(shù)考點+必考知識點匯總

小升初34個小學數(shù)學必考公式

小升初數(shù)學整數(shù)和小數(shù)的應用知識點及??贾R點

小升初數(shù)學經典必考題型50道

蘇教版小升初數(shù)學復習重點資料

小升初數(shù)學知識點:解方程+面積單位公式整理

小升初數(shù)學應用題與幾何題復習資料

小升初數(shù)學知識點:統(tǒng)計圖的意義與分類

小升初必考數(shù)學題目類型匯總

怎么準備小升初數(shù)學復習

小升初數(shù)學必考知識點歸納

在復習數(shù)學中,盡量不貪難題、怪題,而是首先將知識整理成不同的體系、類型,每一類型都選做一些典型的由淺入深的不同層次例題,不僅達到會做的程度,還應在深刻理解的基礎上記住突破點。下面小編給大家?guī)硇∩鯏?shù)
推薦度:
點擊下載文檔文檔為doc格式
1522040