六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>初中學習方法>初一學習方法>七年級數學>

七年級數學知識點整理大全

時間: 燕純0 分享

  大家都知道,初中數學學習是對學生邏輯計算能力的培養(yǎng),想要學好初中數學,就要多總結所學知識,多掌握解題思路,通過習題的練習對數學學習產生興趣。最終實現初中數學的融會貫通,學好這門課程。接下來是小編為大家整理的七年級數學知識點整理大全,希望大家喜歡!

  七年級數學知識點整理大全一

  第五章 相交線與平行線

  1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。

  2、三線八角:對頂角(相等),鄰補角(互補),同位角,內錯角,同旁內角。

  3、兩條直線被第三條直線所截:

  同位角F(在兩條直線的同一旁,第三條直線的同一側)

  內錯角Z(在兩條直線內部,位于第三條直線兩側)

  同旁內角U(在兩條直線內部,位于第三條直線同側)

  4、兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。

  5、垂直三要素:垂直關系,垂直記號,垂足

  6、垂直公理:過一點有且只有一條直線與已知直線垂直。

  7、垂線段最短。

  8、點到直線的距離:直線外一點到這條直線的垂線段的長度。

  9、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

  推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c

  10、平行線的判定:

 ?、偻唤窍嗟龋瑑芍本€平行。②內錯角相等,兩直線平行。 ③同旁內角互補,兩直線平行。

  11、推論:在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行。

  12、平行線的性質:

  ①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。

  13、平面上不相重合的兩條直線之間的位置關系為_______或________

  14、平移:①平移前后的兩個圖形形狀大小不變,位置改變。②對應點的線段平行且相等。

  平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。

  15、命題:判斷一件事情的語句叫命題。

  命題分為題設和結論兩部分;題設是如果后面的,結論是那么后面的。

  命題分為真命題和假命題兩種;定理是經過推理證實的真命題。

  用尺規(guī)作線段和角

  1.關于尺規(guī)作圖:尺規(guī)作圖是指只用圓規(guī)和沒有刻度的直尺來作圖。

  2.關于尺規(guī)的功能

  直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。

  圓規(guī)的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。

  第六章 實數

  一、實數的概念及分類

  1、實數的分類 正有理數 有理數零有限小數和無限循環(huán)小數

  負有理數

  正無理數

  無理數無限不循環(huán)小數

  負無理數

  整數包括正整數、零、負整數。

  正整數又叫自然數。

  正整數、零、負整數、正分數、負分數統(tǒng)稱為有理數。

  2、無理數

  在理解無理數時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

  (1)開方開不盡的數,如7,2等;

  π(2)有特定意義的數,如圓周率π,或化簡后含有π的數,如+8等; 3

  (3)有特定結構的數,如0.1010010001…等;

  二、實數的倒數、相反數和絕對值

  1、相反數

  實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。

  2、絕對值

  一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大于零,負數小于

  零,正數大于一切負數,兩個負數,絕對值大的反而小。

  3、倒數

  如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。

  4. 實數與數軸上點的關系:

  每一個無理數都可以用數軸上的一個點表示出來,

  數軸上的點有些表示有理數,有些表示無理數,

  實數與數軸上的點就是一一對應的,即每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都是表示一個實數。

  三、平方根、算數平方根和立方根

  1、平方根

  (1)平方根的定義:如果一個數x的平方等于a,那么這個數x就叫做a的平方根.即:如果

  a,那么x叫做a的平方根.?x2

  (2)開平方的定義:求一個數的平方根的運算,叫做開平方.開平方運算的被開方數必須是非負數才有意義。

  3?3的平方等于9,9的平方根是?(3)平方與開平方互為逆運算:

  (4)一個正數有兩個平方根,即正數進行開平方運算有兩個結果;

  一個負數沒有平方根,即負數不能進行開平方運算

  (5)符號:正數a的正的平方根可用表示,也是a的算術平方根;

  正數a的負的平方根可用-表示.

  a?2(6)x <—> ??x

  a是x的平方 x的平方是a

  x是a的平方根 a的平方根是x

  2、算術平方根

  a,那么這個正數?(1)算術平方根的定義: 一般地,如果一個正數x的平方等于a,即x2

  x叫做a的算術平方根.a的算術平方根記為,讀作“根號a”,a叫做被開方數.

  規(guī)定:0的算術平方根是0.

  。?a (x≥0)中,規(guī)定x?也就是,在等式x2

  (2)的結果有兩種情況:當a是完全平方數時,是一個有限數;

  當a不是一個完全平方數時,是一個無限不循環(huán)小數。

  (3)當被開方數擴大時,它的算術平方根也擴大;

  當被開方數縮小時與它的算術平方根也縮小。

  (4)夾值法及估計一個(無理)數的大小

  a (x≥0)?(5)x2 <—> ?x

  a是x的平方 x的平方是a

  x是a的算術平方根 a的算術平方根是x

  七年級數學知識點整理大全二

  一:有理數

  知識網絡:

  概念、定義:

  1、大于0的數叫做正數(positive number)。

  2、在正數前面加上負號“-”的數叫做負數(negative number)。

  3、整數和分數統(tǒng)稱為有理數(rational number)。

  4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。

  5、在直線上任取一個點表示數0,這個點叫做原點(origin)。

  6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。

  7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。

  8、正數大于0,0大于負數,正數大于負數。

  9、兩個負數,絕對值大的反而小。

  10、有理數加法法則

  (1)同號兩數相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

  (3)一個數同0相加,仍得這個數。

  11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

  12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。

  13、有理數減法法則

  減去一個數,等于加上這個數的相反數。

  14、有理數乘法法則

  兩數相乘,同號得正,異號得負,并把絕對值向乘。

  任何數同0相乘,都得0。

  15、有理數中仍然有:乘積是1的兩個數互為倒數。

  16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

  17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。

  18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。

  19、有理數除法法則

  除以一個不等于0的數,等于乘這個數的倒數。

  20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。

  21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)

  22、根據有理數的乘法法則可以得出

  負數的奇次冪是負數,負數的偶次冪是正數。

  顯然,正數的任何次冪都是正數,0的任何次冪都是0。

  23、做有理數混合運算時,應注意以下運算順序:

  (1)先乘方,再乘除,最后加減;

  (2)同級運算,從左到右進行;

  (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  24、把一個大于10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。

  25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。

  26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)

  注:黑體字為重要部分

  二:整式的加減

  知識網絡:

  概念、定義:

  1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。

  2、單項式中的數字因數叫做這個單項式的系數(coefficient)。

  3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。

  4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly

  term)。

  5、多項式里次數項的次數,叫做這個多項式的次數(degree of a polynomial)。

  6、把多項式中的同類項合并成一項,叫做合并同類項。

  合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變。

  7、如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;

  8、如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。

  9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。

  三:一元一次方程

  知識網絡:

  概念、定義:

  1、列方程時,要先設字母表示未知數,然后根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。

  2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。

  3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法

  4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。

  5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。

  6、把等式一邊的某項變號后移到另一邊,叫做移項。

  7、應用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間

  盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%

  售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間

  本息和=本金+利息

  四.圖形初步認識

  知識網絡:

  概念、定義:

  1、我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometric figure)。

  2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。

  3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。

  4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。

  5、幾何體簡稱為體(solid)。

  6、包圍著體的是面(surface),面有平的面和曲的面兩種。

  7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。

  8、點動成面,面動成線,線動成體。

  9、經過探究可以得到一個基本事實:經過兩點有一條直線,并且只有一條直線。

  簡述為:兩點確定一條直線(公理)。

  10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。

  11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。

  12、經過比較,我們可以得到一個關于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)

  13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。

  14、角∠(angle)也是一種基本的幾何圖形。

  15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。

  16、從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。

  17、如果兩個角的和等于90°(直角),就是說這兩個叫互為余角(complementary

  angle),即其中的每一個角是另一個角的余角。

  18、如果兩個角的和等于180°(平角),就說這兩個角互為補角(supplementary

  angle),即其中一個角是另一個角的補角

  19、等角的補角相等,等角的余角相等。

  七年級數學知識點整理大全三

  代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)

  幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

  1、實數的分類

  有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環(huán)循小數)都是有理數。如:-3,,0.231,0.737373...

  無理數:無限不環(huán)循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0)。

  實數:有理數和無理數統(tǒng)稱為實數。

  2、無理數

  在理解無理數時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數;二是不循環(huán).二者缺一不可.歸納起來有四類:

  (1)開方開不盡的數,如等;

  (2)有特定意義的數,如圓周率π,或化簡后含有π的數,如+8等;

  (3)有特定結構的數,如0.1010010001...等;

  (4)某些三角函數,如sin60o等。

  注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標準.

  3、非負數:正實數與零的統(tǒng)稱。(表為:x≥0)

  常見的非負數有:

  性質:若干個非負數的和為0,則每個非負擔數均為0。

  4、數軸:規(guī)定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。

  ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸("三要素")。

  ②任何一個有理數都可以用數軸上的一個點來表示。

  ③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

  作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

  5、相反數

  實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。

  即:(1)實數的相反數是。

  七年級數學知識點整理大全四

  正數和負數

 ?、闭龜岛拓摂档母拍?/p>

  負數:比0小的數正數:比0大的數0既不是正數,也不是負數

  注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)

  ②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。

  2.具有相反意義的量

  若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:-8℃

  3.0表示的意義

  ⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

 ?、?是正數和負數的分界線,0既不是正數,也不是負數。如:

  (3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

  有理數

  1.有理數的概念

  ⑴正整數、0、負整數統(tǒng)稱為整數(0和正整數統(tǒng)稱為自然數)

 ?、普謹岛拓摲謹到y(tǒng)稱為分數

  ⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

  理解:只有能化成分數的數才是有理數。①π是無限不循環(huán)小數,不能寫成分數形式,不是有理數。②有限小數和無限循環(huán)小數都可化成分數,都是有理數。3,整數也能化成分數,也是有理數

  注意:引入負數以后,奇數和偶數的范圍也擴大了,像-2,-4,-6,-8?也是偶數,-1,-3,-5?也是奇數。

  2.有理數的分類

 ?、虐从欣頂档囊饬x分類⑵按正、負來分正整數

  整數0正有理數正分數

  有理數有理數0(0不能忽視)

  負整數

  分數負有理數負分數

  總結:①正整數、0統(tǒng)稱為非負整數(也叫自然數)

  ②負整數、0統(tǒng)稱為非正整數

 ?、壅欣頂怠?統(tǒng)稱為非負有理數

 ?、茇撚欣頂怠?統(tǒng)稱為非正有理數

  數軸

 ?、睌递S的概念

  規(guī)定了原點,正方向,單位長度的直線叫做數軸。

  注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不

  可;⑶同一數軸上的單位長度要統(tǒng)一;⑷數軸的三要素都是根據實際需要規(guī)定的。

  2.數軸上的點與有理數的關系

 ?、潘械挠欣頂刀伎梢杂脭递S上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。

  ⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)

  3.利用數軸表示兩數大小

 ?、旁跀递S上數的大小比較,右邊的數總比左邊的數大;

 ?、普龜刀即笥?,負數都小于0,正數大于負數;

  ⑶兩個負數比較,距離原點遠的數比距離原點近的數小。

  4.數軸上特殊的(小)數

 ?、抛钚〉淖匀粩凳?,無的自然數;

 ?、谱钚〉恼麛凳?,無的正整數;

 ?、堑呢撜麛凳?1,無最小的負整數

  5.a可以表示什么數

 ?、臿>0表示a是正數;反之,a是正數,則a>0;

  ⑵a<0表示a是負數;反之,a是負數,則a<0

 ?、莂=0表示a是0;反之,a是0,,則a=0

  相反數

  ⒈相反數

  只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。

  注意:⑴相反數是成對出現的;⑵相反數只有符號不同,若一個為正,則另一個為負;

  ⑶0的相反數是它本身;相反數為本身的數是0。

  2.相反數的性質與判定

  ⑴任何數都有相反數,且只有一個;

 ?、?的相反數是0;

  ⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0

  3.相反數的幾何意義

  在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。說明:在數軸上,表示互為相反數的兩個點關于原點對稱。

  4.相反數的求法

  ⑴求一個數的相反數,只要在它的前面添上負號“-”即可求得(如:5的相反數是-5);

  ⑵求多個數的和或差的相反數時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數是-(5a+b)。化簡得-5a-b);

 ?、乔笄懊鎺А?”的單個數,也應先用括號括起來再添“-”,然后化簡(如:-5的相反數是-(-5),化

  簡得5)

  5.相反數的表示方法

 ?、乓话愕兀瑪礱的相反數是-a,其中a是任意有理數,可以是正數、負數或0。

  當a>0時,-a<0(正數的相反數是負數)

  當a<0時,-a>0(負數的相反數是正數)

  當a=0時,-a=0,(0的相反數是0)

  絕對值

 ?、苯^對值的幾何定義

  一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。

  2.絕對值的代數定義

 ?、乓粋€正數的絕對值是它本身;⑵一個負數的絕對值是它的相反數;⑶0的絕對值是0.

  可用字母表示為:

  ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可歸納為①:a≥0,<═>|a|=a(非負數的絕對值等于本身;絕對值等于本身的數是非負數。)②a≤0,<═>|a|=-a(非正數的絕對值等于其相反數;絕對值等于其相反數的數是非正數。)經典考題

  如數軸所示,化簡下列各數

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.絕對值的性質

  任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;

  ⑵一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;

  ⑶任何數的絕對值都不小于原數。即:|a|≥a;

  ⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;

  ⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

 ?、式^對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;

  ⑺若幾個數的絕對值的和等于0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。

  (非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)

  經典考題

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因為|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0,|2b-2|=0,|c-1|=0

  即a=-3,b=1,c=1

  所以a+b+c=-3+1+1=-1

  4.有理數大小的比較

 ?、爬脭递S比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;

  ⑵利用絕對值比較兩個負數的大?。簝蓚€負數比較大小,絕對值大的反而小;異號兩數比較大小,正數

  大于負數。

  5.絕對值的化簡

 ?、佼攁≥0時,|a|=a;②當a≤0時,|a|=-a

  6.已知一個數的絕對值,求這個數

  一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。如:|a|=5,則a=土5

  有理數的加減法

  1.有理數的加法法則

  ⑴同號兩數相加,取相同的符號,并把絕對值相加;

 ?、平^對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數的兩數相加,和為零;

 ?、纫粋€數與零相加,仍得這個數。

  2.有理數加法的運算律

 ?、偶臃ń粨Q律:a+b=b+a

  ⑵加法結合律:(a+b)+c=a+(b+c)

  在運用運算律時,一定要根據需要靈活運用,以達到化簡的目的,通常有下列規(guī)律:

  ①互為相反數的兩個數先相加——“相反數結合法”;

 ?、诜栂嗤膬蓚€數先相加——“同號結合法”;

 ?、鄯帜赶嗤臄迪认嗉印巴帜附Y合法”;

 ?、軒讉€數相加得到整數,先相加——“湊整法”;

 ?、菡麛蹬c整數、小數與小數相加——“同形結合法”。

  3.加法性質

  一個數加正數后的和比原數大;加負數后的和比原數小;加0后的和等于原數。即:

 ?、女攂>0時,a+b>a⑵當b<0時,a+b<a⑶當b=0時,a+b=a< p="">

  4.有理數減法法則

  減去一個數,等于加上這個數的相反數。用字母表示為:a-b=a+(-b)。

  5.有理數加減法統(tǒng)一成加法的意義

  在有理數加減法混合運算中,根據有理數減法法則,可以將減法轉化成加法后,再按照加法法則進行計算。

  在和式里,通常把各個加數的括號和它前面的加號省略不寫,寫成省略加號的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

  和式的讀法:①按這個式子表示的意義讀作“負8、負7、負6、正5的和”

  ②按運算意義讀作“負8減7減6加5”

  6.有理數加減混合運算中運用結合律時的一些技巧:

  Ⅰ.把符號相同的加數相結合(同號結合法)

  (-33)-(-18)+(-15)-(+1)+(+23)

  原式=-33+(+18)+(-15)+(-1)+(+23)(將減法轉換成加法)

  =-33+18-15-1+23(省略加號和括號)

  =(-33-15-1)+(18+23)(把符號相同的加數相結合)

  =-49+41(運用加法法則一進行運算)

  =-8(運用加法法則二進行運算)

 ?、?把和為整數的加數相結合(湊整法)

  (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)

  原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(將減法轉換成加法)

  =6.6-5.2+3.8-2.6-4.8(省略加號和括號)

  =(6.6-2.6)+(-5.2-4.8)+3.8(把和為整數的加數相結合)

  =4-10+3.8(運用加法法則進行運算)

  =7.8-10(把符號相同的加數相結合,并進行運算)=-2.2(得出結論)

 ?、?把分母相同或便于通分的加數相結合(同分母結合法)313217-+-+-524528

  321137原式=(--)+(-+)+(+-)552248

  1=-1+0-8

  1=-18-

  Ⅳ.既有小數又有分數的運算要統(tǒng)一后再結合(先統(tǒng)一后結合)312)+(-3)-(-10)-(+1.25)483

  13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834

  13121=+3-3+10-184834

  31112=(3-1)+(-3)+1044883

  12=2-3+1023

  1=-3+136

  1=106(+0.125)-(-3

 ?、?把帶分數拆分后再結合(先拆分后結合)-31617+10-12+45112215

七年級數學知識點整理大全相關文章

1.七年級數學知識點大全

2.初一數學知識點整理

3.初中七年級數學知識點歸納

4.初一數學知識點總結

5.七年級上數學知識點總結

6.人教版七年級數學知識點總結

7.初中數學知識點整理:

8.七年級數學知識點

9.初一數學知識點歸納

10.初一數學上冊知識點歸納

七年級數學知識點整理大全

大家都知道,初中數學學習是對學生邏輯計算能力的培養(yǎng),想要學好初中數學,就要多總結所學知識,多掌握解題思路,通過習題的練習對數學學習產生興趣。最終實現初中數學的融會貫通,??
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 七年級學習數學的方法總結
    七年級學習數學的方法總結

      同學們在進入初中學習數學時,可能一時無法適應,初中數學的學習節(jié)奏。初中數學學得不好的同學有可能在于他們并不精讀于課本,或是在學習的過

  • 七年級數學教師教學計劃
    七年級數學教師教學計劃

      經常制訂工作計劃,可以使人的生活、工作和學習比較有規(guī)律性,養(yǎng)成良好的習慣,習慣了制訂工作計劃,讓人變得不拖拉、不懶惰、不推諉、不依賴

  • 七年級數學復習計劃大全
    七年級數學復習計劃大全

      復習是鞏固已學知識,拓展新知識的必要手段,做好期末復習工作能使學生全面系統(tǒng)掌握基礎知識,提高基本技能,開展學生的智力。復習階段做到有

  • 七年級關于數學教學反思大全
    七年級關于數學教學反思大全

      一學期來,數學組的老師共同合作、共同探索、共同成長。接下來是小編為大家整理的七年級關于數學教學反思大全,希望大家喜歡!  七年級數學教

406728