九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料
2022年最新九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料
要養(yǎng)成良好的學(xué)習(xí)習(xí)慣,合理利用時(shí)間,另外還要注意"專(zhuān)心、用心、恒心"等基本素質(zhì)的培養(yǎng),對(duì)于自身的優(yōu)勢(shì)、缺陷等更要有深刻的認(rèn)識(shí)。那么你們知道關(guān)于九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料內(nèi)容還有哪些呢?下面是小編為大家準(zhǔn)備2022年最新九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料,歡迎參閱。
九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料
九年級(jí)期末數(shù)學(xué)復(fù)習(xí)資料
九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料大全
九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料
7.特殊值的形式
①當(dāng)x=1時(shí) y=a+b+c
②當(dāng)x=-1時(shí) y=a-b+c
③當(dāng)x=2時(shí) y=4a+2b+c
④當(dāng)x=-2時(shí) y=4a-2b+c
二次函數(shù)的性質(zhì)
8.定義域:R
值域:(對(duì)應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請(qǐng)讀者自行推斷)①[(4ac-b^2)/4a,
正無(wú)窮);②[t,正無(wú)窮)
奇偶性:當(dāng)b=0時(shí)為偶函數(shù),當(dāng)b≠0時(shí)為非奇非偶函數(shù) 。 周期性:無(wú)
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,則拋物線(xiàn)開(kāi)口朝上;a<0,則拋物線(xiàn)開(kāi)口朝下;
⑶極值點(diǎn):(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,圖象與x軸交于兩點(diǎn):
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,圖象與x軸交于一點(diǎn):
(-b/2a,0);
Δ<0,圖象與x軸無(wú)交點(diǎn);
②y=a(x-h)^2+k[頂點(diǎn)式]
此時(shí),對(duì)應(yīng)極值點(diǎn)為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a; ③y=a(x-x1)(x-x2)[交點(diǎn)式(雙根式)](a≠0)
對(duì)稱(chēng)軸X=(X1+X2)/2 當(dāng)a>0 且X≧(X1+X2)/2時(shí),Y隨X的增大而增大,當(dāng)a>0且X≦(X1+X2)/2時(shí)Y隨X
的增大而減小
此時(shí),x1、x2即為函數(shù)與X軸的兩個(gè)交點(diǎn),將X、Y代入即可求出解析式(一般與一元二次方程連
用)。
交點(diǎn)式是Y=A(X-X1)(X-X2) 知道兩個(gè)x軸交點(diǎn)和另一個(gè)點(diǎn)坐標(biāo)設(shè)交點(diǎn)式。兩交點(diǎn)X值就是相應(yīng)X1 X2值。
26.2 用函數(shù)觀(guān)點(diǎn)看一元二次方程
0的一個(gè)根。?c?bx?x0就是方程ax2?x0時(shí),函數(shù)的值是0,因此x?c與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是x0,那么當(dāng)x?bx?ax2?1. 如果拋物線(xiàn)y
2. 二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒(méi)有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對(duì)應(yīng)著一元二次方程根的三種情況:沒(méi)有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。
26.3 實(shí)際問(wèn)題與二次函數(shù)
在日常生活、生產(chǎn)和科研中,求使材料最省、時(shí)間最少、效率等問(wèn)題,有些可歸結(jié)為求二次函數(shù)的值或最小值。
九年級(jí)期末數(shù)學(xué)復(fù)習(xí)資料
27.1 圖形的相似
概述
如果兩個(gè)圖形形狀相同,但大小不一定相等,那么這兩個(gè)圖形相似。(相似的符號(hào):∽)
判定
如果兩個(gè)多邊形滿(mǎn)足對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等,那么這兩個(gè)多邊形相似。
相似比
相似多邊形的對(duì)應(yīng)邊的比叫相似比。相似比為1時(shí),相似的兩個(gè)圖形全等。
性質(zhì)
相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等。相似多邊形的周長(zhǎng)比等于相似比。
相似多邊形的面積比等于相似比的平方。
27.2 相似三角形
判定
1.兩個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等
2.兩邊對(duì)應(yīng)成比例,且?jiàn)A角相等
3.三邊對(duì)應(yīng)成比例
九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料大全
一、圓的定義
1、以定點(diǎn)為圓心,定長(zhǎng)為半徑的點(diǎn)組成的圖形。
2、在同一平面內(nèi),到一個(gè)定點(diǎn)的距離都相等的點(diǎn)組成的圖形。
二、圓的各元素
1、半徑:圓上一點(diǎn)與圓心的連線(xiàn)段。
2、直徑:連接圓上兩點(diǎn)有經(jīng)過(guò)圓心的線(xiàn)段。
3、弦:連接圓上兩點(diǎn)線(xiàn)段(直徑也是弦)。
4、?。簣A上兩點(diǎn)之間的曲線(xiàn)部分。半圓周也是弧。
(1)劣?。盒∮诎雸A周的弧。
(2)優(yōu)弧:大于半圓周的弧。
5、圓心角:以圓心為頂點(diǎn),半徑為角的邊。
6、圓周角:頂點(diǎn)在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線(xiàn)段的長(zhǎng)。
三、圓的基本性質(zhì)
1、圓的對(duì)稱(chēng)性
(1)圓是圖形,它的對(duì)稱(chēng)軸是直徑所在的直線(xiàn)。
(2)圓是中心對(duì)稱(chēng)圖形,它的對(duì)稱(chēng)中心是圓心。
(3)圓是對(duì)稱(chēng)圖形。
2、垂徑定理。
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對(duì)的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對(duì)的兩條弧。
平分弧的直徑,垂直平分弧所對(duì)的弦。
3、圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。圓周角的度數(shù)等于它所對(duì)弧度數(shù)的一半。
(1)同弧所對(duì)的圓周角相等。
(2)直徑所對(duì)的圓周角是直角;圓周角為直角,它所對(duì)的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對(duì)量中只要有一對(duì)量相等,其余四對(duì)量也分別相等。
5、夾在平行線(xiàn)間的兩條弧相等。
6、設(shè)⊙O的半徑為r,OP=d。
7、(1)過(guò)兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線(xiàn)段的中垂線(xiàn)上。
(2)不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線(xiàn)的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。
(直角的外心就是斜邊的中點(diǎn)。)
8、直線(xiàn)與圓的位置關(guān)系。d表示圓心到直線(xiàn)的距離,r表示圓的半徑。
直線(xiàn)與圓有兩個(gè)交點(diǎn),直線(xiàn)與圓相交;直線(xiàn)與圓只有一個(gè)交點(diǎn),直線(xiàn)與圓相切;
直線(xiàn)與圓沒(méi)有交點(diǎn),直線(xiàn)與圓相離。
9、中,A(x1,y1)、B(x2,y2)。
10、圓的切線(xiàn)判定。
(1)d=r時(shí),直線(xiàn)是圓的切線(xiàn)。
切點(diǎn)不明確:畫(huà)垂直,證半徑。
(2)經(jīng)過(guò)半徑的外端且與半徑垂直的直線(xiàn)是圓的切線(xiàn)。
切點(diǎn)明確:連半徑,證垂直。
11、圓的切線(xiàn)的性質(zhì)(補(bǔ)充)。
(1)經(jīng)過(guò)切點(diǎn)的直徑一定垂直于切線(xiàn)。
(2)經(jīng)過(guò)切點(diǎn)并且垂直于這條切線(xiàn)的直線(xiàn)一定經(jīng)過(guò)圓心。
12、切線(xiàn)長(zhǎng)定理。
(1)切線(xiàn)長(zhǎng):從圓外一點(diǎn)引圓的兩條切線(xiàn),切點(diǎn)與這點(diǎn)之間連線(xiàn)段的長(zhǎng)叫這個(gè)點(diǎn)到圓的切線(xiàn)長(zhǎng)。
(2)切線(xiàn)長(zhǎng)定理。
∵PA、PB切⊙O于點(diǎn)A、B
∴PA=PB,∠1=∠2。
13、內(nèi)切圓及有關(guān)計(jì)算。
(1)內(nèi)切圓的圓心是三個(gè)內(nèi)角平分線(xiàn)的交點(diǎn),它到三邊的距離相等。
(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點(diǎn)D、E、F。
求:AD、BE、CF的長(zhǎng)。
分析:設(shè)AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求內(nèi)切圓的半徑r。
分析:先證得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
14、(1)弦切角:角的頂點(diǎn)在圓周上,角的一邊是圓的切線(xiàn),另一邊是圓的弦。
BC切⊙O于點(diǎn)B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圓的兩條弦AB與CD相交于點(diǎn)P,則PA?PB=PC?PD。
(3)切割線(xiàn)定理。
如圖,PA切⊙O于點(diǎn)A,PBC是⊙O的割線(xiàn),則PA2=PB?PC。
(4)推論:如圖,PAB、PCD是⊙O的割線(xiàn),則PA?PB=PC?PD。
15、圓與圓的位置關(guān)系。
(1)外離:d>r1+r2,交點(diǎn)有0個(gè);
外切:d=r1+r2,交點(diǎn)有1個(gè);
相交:r1-r2
內(nèi)切:d=r1-r2,交點(diǎn)有1個(gè);
內(nèi)含:0≤d
(2)性質(zhì)。
相交兩圓的連心線(xiàn)垂直平分公共弦。
相切兩圓的連心線(xiàn)必經(jīng)過(guò)切點(diǎn)。
16、圓中有關(guān)量的計(jì)算。
(1)弧長(zhǎng)有L表示,圓心角用n表示,圓的半徑用R表示。
(2)扇形的面積用S表示。
(3)圓錐的側(cè)面展開(kāi)圖是扇形。
r為底面圓的半徑,a為母線(xiàn)長(zhǎng)。
九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料相關(guān)文章:
★ 九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料
★ 九年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)
★ 人教版九年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)提綱
★ 人教版初三數(shù)學(xué)知識(shí)點(diǎn)歸納