六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)

時(shí)間: 贊銳20 分享

請(qǐng)不要埋怨學(xué)習(xí)的繁重,工作的勞苦,感情的負(fù)擔(dān),因?yàn)檎嬲目鞓?lè),是奮戰(zhàn)后的結(jié)果,沒(méi)有經(jīng)歷深刻的痛苦,我們也就體會(huì)不到酣暢淋漓的快樂(lè)!從學(xué)習(xí)中可以體驗(yàn)到很多樂(lè)趣的!以下是小編給大家整理的高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn),希望能助你一臂之力!

高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)1

導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話(huà),函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線(xiàn)在這一點(diǎn)上的切線(xiàn)斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線(xiàn)性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。

不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱(chēng)其在這一點(diǎn)可導(dǎo),否則稱(chēng)為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

對(duì)于可導(dǎo)的函數(shù)f(x),x?f'(x)也是一個(gè)函數(shù),稱(chēng)作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱(chēng)為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也來(lái)源于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)2

一、直線(xiàn)與方程

(1)直線(xiàn)的傾斜角

定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當(dāng)直線(xiàn)與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線(xiàn)的斜率

①定義:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。

②過(guò)兩點(diǎn)的直線(xiàn)的斜率公式:

注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標(biāo)先求斜率得到。

(3)直線(xiàn)方程

①點(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)

注意:當(dāng)直線(xiàn)的斜率為0°時(shí),k=0,直線(xiàn)的方程是y=y1。

當(dāng)直線(xiàn)的斜率為90°時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

②斜截式:,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b

③兩點(diǎn)式:()直線(xiàn)兩點(diǎn),

④截矩式:

其中直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

平行于x軸的直線(xiàn):(b為常數(shù));平行于y軸的直線(xiàn):(a為常數(shù));

(5)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)

(一)平行直線(xiàn)系

平行于已知直線(xiàn)(是不全為0的常數(shù))的直線(xiàn)系:(C為常數(shù))

(二)垂直直線(xiàn)系

垂直于已知直線(xiàn)(是不全為0的常數(shù))的直線(xiàn)系:(C為常數(shù))

(三)過(guò)定點(diǎn)的直線(xiàn)系

(ⅰ)斜率為k的直線(xiàn)系:,直線(xiàn)過(guò)定點(diǎn);

(ⅱ)過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為

(為參數(shù)),其中直線(xiàn)不在直線(xiàn)系中。

(6)兩直線(xiàn)平行與垂直

當(dāng),時(shí),;

注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。

(7)兩條直線(xiàn)的交點(diǎn)

相交

交點(diǎn)坐標(biāo)即方程組的一組解。

方程組無(wú)解;方程組有無(wú)數(shù)解與重合

(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),

(9)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離

(10)兩平行直線(xiàn)距離公式

在任一直線(xiàn)上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。

高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)3

一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))

1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

二、函數(shù)(30課時(shí),12個(gè))

1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

三、數(shù)列(12課時(shí),5個(gè))

1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。

四、三角函數(shù)(46課時(shí),17個(gè))

1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線(xiàn);5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

五、平面向量(12課時(shí),8個(gè))

1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。

六、不等式(22課時(shí),5個(gè))

1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。

七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))

1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線(xiàn)性規(guī)劃問(wèn)題;9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。

八、圓錐曲線(xiàn)(18課時(shí),7個(gè))

1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線(xiàn)及其標(biāo)準(zhǔn)方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標(biāo)準(zhǔn)方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。

九、直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))

1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5.直線(xiàn)和平面垂直的判定與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14.異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))

1.分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì)。

十一、概率(12課時(shí),5個(gè))

1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。

選修Ⅱ(24個(gè))

十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))

1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線(xiàn)性回歸。

十三、極限(12課時(shí),6個(gè))

1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。

十四、導(dǎo)數(shù)(18課時(shí),8個(gè))

1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的值和最小值。

十五、復(fù)數(shù)(4課時(shí),4個(gè))

1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。

高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)相關(guān)文章:

2018高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié)(3)

高二數(shù)學(xué)會(huì)考集合知識(shí)點(diǎn)總結(jié)(2)

高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識(shí)點(diǎn)2020總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高二數(shù)學(xué)??贾R(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)上冊(cè)

2017高二數(shù)學(xué)會(huì)考有關(guān)算法知識(shí)點(diǎn)

1069488