高二數學上冊知識點概括
如果高二階段老師在的時候你就認真學習,不在的時候就隨隨便便,甚至消極怠工,似乎是為老師學習,這種意識下的學習效率是可想而知的。以下是小編給大家整理的高二數學知識點,希望大家能夠喜歡!
高二數學上冊復習的知識點概括1
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區(qū)間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關于y軸對稱
y=f(x)→y=-f(x),關于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關于直線x=a對稱;
高二數學上冊復習的知識點概括2
一、變量間的相關關系
1.常見的兩變量之間的關系有兩類:一類是函數關系,另一類是相關關系;與函數關系不同,相關關系是一種非確定性關系.
2.從散點圖上看,點分布在從左下角到右上角的區(qū)域內,兩個變量的這種相關關系稱為正相關,點分布在左上角到右下角的區(qū)域內,兩個變量的相關關系為負相關.
二、兩個變量的線性相關
1.從散點圖上看,如果這些點從整體上看大致分布在通過散點圖中心的一條直線附近,稱兩個變量之間具有線性相關關系,這條直線叫回歸直線.
當r>0時,表明兩個變量正相關;
當r<0時,表明兩個變量負相關.
r的絕對值越接近于1,表明兩個變量的線性相關性越強.r的絕對值越接近于0時,表明兩個變量之間幾乎不存在線性相關關系.通常|r|大于0.75時,認為兩個變量有很強的線性相關性.
三、解題方法
1.相關關系的判斷方法一是利用散點圖直觀判斷,二是利用相關系數作出判斷.
2.對于由散點圖作出相關性判斷時,若散點圖呈帶狀且區(qū)域較窄,說明兩個變量有一定的線性相關性,若呈曲線型也是有相關性.
3.由相關系數r判斷時|r|越趨近于1相關性越強.
高二數學上冊復習的知識點概括3
反函數:
(1)定義:
(2)函數存在反函數的條件:
(3)互為反函數的定義域與值域的關系:
(4)求反函數的步驟:
①將看成關于的方程,解出,若有兩解,要注意解的選擇;
②將互換,得;
③寫出反函數的定義域(即的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
高二數學上冊復習的知識點概括相關文章: