高二數(shù)學(xué)老師講解的知識(shí)點(diǎn)歸納
學(xué)習(xí)上的自主意識(shí)不可能有外界的力量強(qiáng)加于你,只有自己才能夠讓自己的學(xué)習(xí)行為產(chǎn)生自覺性,因此變“要我學(xué)為我要學(xué)”在高二時(shí)期顯得更為重要。以下是小編給大家整理的高二數(shù)學(xué)老師講解的知識(shí)點(diǎn)歸納,希望大家能夠喜歡!
高二數(shù)學(xué)老師講解的知識(shí)點(diǎn)歸納1
直線的傾斜角:
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
直線的斜率:
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過(guò)兩點(diǎn)的直線的斜率公式。
注意:
(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
直線方程:
1.點(diǎn)斜式:y-y0=k(x-x0)
(x0,y0)是直線所通過(guò)的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。
2.斜截式:y=kx+b
直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡(jiǎn)稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。
3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。
如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
對(duì)x的截距就是y=0時(shí),x的值,對(duì)y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來(lái)比較方便。
高二數(shù)學(xué)老師講解的知識(shí)點(diǎn)歸納2
極值的定義:
(1)極大值:一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)
(2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)>f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)。
極值的性質(zhì):
(1)極值是一個(gè)局部概念,由定義知道,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)或最小;
(2)函數(shù)的極值不是的,即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè);
(3)極大值與極小值之間無(wú)確定的大小關(guān)系,即一個(gè)函數(shù)的極大值未必大于極小值;
(4)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn),而使函數(shù)取得值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)。
求函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(x);
(2)求方程f′(x)=0的根;
(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào)即都為正或都為負(fù),則f(x)在這個(gè)根處無(wú)極值。
高二數(shù)學(xué)老師講解的知識(shí)點(diǎn)歸納3
一、集合概念
(1)集合中元素的特征:確定性,互異性,無(wú)序性。
(2)集合與元素的關(guān)系用符號(hào)=表示。
(3)常用數(shù)集的符號(hào)表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。
(4)集合的表示法:列舉法,描述法,韋恩圖。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
函數(shù)
一、映射與函數(shù):
(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷方法:①對(duì)應(yīng)法則;②定義域(兩點(diǎn)必須同時(shí)具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問(wèn)題的定義域要分類討論;
②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:的形式;
②逆求法(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;
④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;
⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來(lái)求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。
高二數(shù)學(xué)老師講解的知識(shí)點(diǎn)歸納相關(guān)文章:
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 高二數(shù)學(xué)整體知識(shí)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 高二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)全