六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高二數(shù)學水平考試練習的知識點歸納

時間: 贊銳0 分享

要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣可以讓我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。小編帶來了高二數(shù)學水平考試練習的知識點歸納,希望大家能夠喜歡!

高二數(shù)學水平考試練習的知識點歸納1

1、導數(shù)的定義:在點處的導數(shù)記作.

2.導數(shù)的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函數(shù)的導數(shù)公式:

4.導數(shù)的四則運算法則:

5.導數(shù)的應用:

(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導數(shù);

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;

(3)求可導函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。

高二數(shù)學水平考試練習的知識點歸納2

等差數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

將以上n-1個式子相加,便會接連消去很多相關的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。

此外,數(shù)列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復述。

值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。

等比數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

那么,通項公式為(即a1乘以q的(n-1)次方,其推導為“連乘原理”的思想:

a2=a1_q,

a3=a2_q,

a4=a3_q,

````````

an=an-1_q,

將以上(n-1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。

此外,當q=1時該數(shù)列的前n項和Tn=a1_n

當q≠1時該數(shù)列前n項的和Tn=a1_(1-q^(n))/(1-q).

高二數(shù)學水平考試練習的知識點歸納3

(1)順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。

順序結構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所

指定的操作。

(2)條件結構:條件結構是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的

算法結構。

條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行

A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可以有多個判斷框。

(3)循環(huán)結構:在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。循環(huán)結構又稱重復結構,循環(huán)結構可細分為兩類:

①一類是當型循環(huán)結構,如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

②另一類是直到型循環(huán)結構,如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

注意:

1循環(huán)結構要在某個條件下終止循環(huán),這就需要條件結構來判斷。因此,循環(huán)結構中一定包含條件結構,但不允許“死循環(huán)”。

2在循環(huán)結構中都有一個計數(shù)變量和累

加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次

高二數(shù)學水平考試練習的知識點歸納相關文章

高二數(shù)學會考集合知識點總結

高二數(shù)學考試必考知識點

高二數(shù)學知識點歸納總結

高二數(shù)學知識點總結歸納

高二數(shù)學必背知識點總結

高二數(shù)學??贾R點總結

高二數(shù)學知識點總結

高二數(shù)學知識點復習總結

高二數(shù)學知識點新總結2020

高二數(shù)學水平考試練習的知識點歸納

要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣可以讓我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。小編帶來了高二數(shù)學水平考試練習
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高二數(shù)學課程解答知識點總結
    高二數(shù)學課程解答知識點總結

    對高中生來說,學好數(shù)學,要抱著濃厚的興趣去學習數(shù)學,積極展開思維的翅膀,主動地參與教育全過程,充分發(fā)揮自己的主觀能動性,愉快有效地學數(shù)學

  • 高二數(shù)學上學期必記的重要知識點分析
    高二數(shù)學上學期必記的重要知識點分析

    復習數(shù)學時,要制定好計劃,不但要有本學期大的規(guī)劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,下面是小編給

  • 高二數(shù)學選修的必學知識點總結
    高二數(shù)學選修的必學知識點總結

    知識掌握的巔峰,應該在一輪復習之后,也就是在你把所有知識重新?lián)炱饋碇?。這樣看來,應對高二這一變化的較優(yōu)選擇,是在高二還在學習新知識時,

  • 高二數(shù)學選修一重要知識點分析
    高二數(shù)學選修一重要知識點分析

    數(shù)學習題無非就是數(shù)學概念和數(shù)學思想的組合應用,弄清數(shù)學基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依

1071313