六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高二數(shù)學第一課重要知識點總結

時間: 贊銳0 分享

學數(shù)學要做一定量的習題,但學數(shù)學并不等于做題,在各種考試題中,有相當?shù)牧曨}是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過做一定量的習題達到對解題方法的展移而實現(xiàn)的。小編帶來了高二數(shù)學第一課重要知識點總結,希望大家能夠喜歡!

高二數(shù)學第一課重要知識點總結1

反函數(shù)

(1)定義:

(2)函數(shù)存在反函數(shù)的條件:

(3)互為反函數(shù)的定義域與值域的關系:

(4)求反函數(shù)的步驟:①將看成關于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。

(5)互為反函數(shù)的圖象間的關系:

(6)原函數(shù)與反函數(shù)具有相同的單調性;

(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。

七、常用的初等函數(shù):

(1)一元一次函數(shù):

(2)一元二次函數(shù):

一般式

兩點式

頂點式

二次函數(shù)求最值問題:首先要采用配方法,化為一般式,

有三個類型題型:

(1)頂點固定,區(qū)間也固定。如:

(2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內,何時在區(qū)間之外。

(3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).

等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根

注意:若在閉區(qū)間討論方程有實數(shù)解的情況,可先利用在開區(qū)間上實根分布的情況,得出結果,在令和檢查端點的情況。

(3)反比例函數(shù):

(4)指數(shù)函數(shù):

指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0

(5)對數(shù)函數(shù):

對數(shù)函數(shù):y=(a>o,a≠1)圖象恒過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0

注意:

(1)比較兩個指數(shù)或對數(shù)的大小的基本方法是構造相應的指數(shù)或對數(shù)函數(shù),若底數(shù)不相同時轉化為同底數(shù)的指數(shù)或對數(shù),還要注意與1比較或與0比較。

高二數(shù)學第一課重要知識點總結2

簡單隨機抽樣的定義:

一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

簡單隨機抽樣的特點:

(1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為

;在整個抽樣過程中各個個體被抽到的概率為

(2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;

(3)簡單隨機抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎.

(4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣

簡單抽樣常用方法:

(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當總體的個體數(shù)不太多時適宜采用抽簽法.(2)隨機數(shù)表法:隨機數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率.

高二數(shù)學第一課重要知識點總結3

函數(shù)的單調性、奇偶性、周期性

單調性:定義:注意定義是相對與某個具體的區(qū)間而言。

判定方法有:定義法(作差比較和作商比較)

導數(shù)法(適用于多項式函數(shù))

復合函數(shù)法和圖像法。

應用:比較大小,證明不等式,解不等式。

奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

判別方法:定義法,圖像法,復合函數(shù)法

應用:把函數(shù)值進行轉化求解。

周期性:定義:若函數(shù)f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

其他:若函數(shù)f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。

高二數(shù)學第一課重要知識點總結相關文章

高二數(shù)學知識點總結

高二數(shù)學必背知識點總結

高二數(shù)學知識點總結歸納

高二數(shù)學知識點歸納總結

高二數(shù)學考點知識點總結復習大綱

高二數(shù)學知識點歸納小總結

高二數(shù)學知識點總結詳細

高二數(shù)學知識點新總結2020

高二數(shù)學知識點復習總結

高二數(shù)學常考知識點總結

1079314