高二數(shù)學(xué)全省統(tǒng)考的知識(shí)點(diǎn)
在每天的復(fù)習(xí)計(jì)劃里,要留有一定的時(shí)間看課本,看筆記,回顧過(guò)去知識(shí)點(diǎn),思考老師當(dāng)天講了什么知識(shí),歸納當(dāng)天所學(xué)的知識(shí),這樣才能有所進(jìn)步。以下是小編給大家整理的高二數(shù)學(xué)全省統(tǒng)考的知識(shí)點(diǎn),希望能助你一臂之力!
高二數(shù)學(xué)全省統(tǒng)考的知識(shí)點(diǎn)1
兩個(gè)復(fù)數(shù)相等的定義:
如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0
a=0,b=0.
復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題解決的途徑。
復(fù)數(shù)相等特別提醒:
一般地,兩個(gè)復(fù)數(shù)只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。
解復(fù)數(shù)相等問(wèn)題的方法步驟:
(1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;
(2)根據(jù)復(fù)數(shù)相等的充要條件解之。
高二數(shù)學(xué)全省統(tǒng)考的知識(shí)點(diǎn)2
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
高二數(shù)學(xué)全省統(tǒng)考的知識(shí)點(diǎn)3
1.等差數(shù)列通項(xiàng)公式
an=a1+(n-1)d
n=1時(shí)a1=S1
n≥2時(shí)an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導(dǎo)過(guò)程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項(xiàng)
由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱(chēng)最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
3.前n項(xiàng)和
倒序相加法推導(dǎo)前n項(xiàng)和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數(shù)列性質(zhì)
一、任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq
四、對(duì)任意的k∈N_,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。
高二數(shù)學(xué)全省統(tǒng)考的知識(shí)點(diǎn)相關(guān)文章:
★ 高二數(shù)學(xué)考試必考知識(shí)點(diǎn)
★ 高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)總結(jié)
★ 高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)新總結(jié)2020