人教版高二數(shù)學(xué)必學(xué)的知識點講解
高二階段作為承上啟下的一年,是學(xué)習(xí)最容易松懈的一年,往往會因為缺乏新鮮感、陌生感而失去了學(xué)習(xí)的興趣和熱情,也往往會為高一的努力沒有達到預(yù)期的目標而自暴自棄,從而在高二階段對學(xué)習(xí)失去了信心。小編整理了人教版高二數(shù)學(xué)必學(xué)的知識點講解,希望能幫助到你!
人教版高二數(shù)學(xué)必學(xué)的知識點講解1
1、圓的標準方程:
圓心為A(a,b),半徑為r的圓的方程
2、點與圓的關(guān)系的判斷方法:(1),點在圓外(2),點在圓上(3),點在圓內(nèi)
4.1.2圓的一般方程
1、圓的一般方程:
2、圓的一般方程的特點:
(1)①x2和y2的系數(shù)相同,不等于0.
②沒有xy這樣的二次項.
(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了.
(3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯。
4.2.1圓與圓的位置關(guān)系
1、用點到直線的距離來判斷直線與圓的位置關(guān)系.
4.2.2圓與圓的位置關(guān)系
4.2.3直線與圓的方程的應(yīng)用
1、利用平面直角坐標系解決直線與圓的位置關(guān)系;
2、過程與方法
用坐標法解決幾何問題的步驟:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺讼?,用坐標和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.
4.3.1空間直角坐標系
1、點M對應(yīng)著確定的有序?qū)崝?shù)組,對應(yīng)著空間直角坐標系中的一點3、空間中任意點M的坐標都可以用有序?qū)崝?shù)組來表示,該數(shù)組叫做點M在此空間直角坐標系中的坐標,記M
4.3.2空間兩點間的距離公式
人教版高二數(shù)學(xué)必學(xué)的知識點講解2
復(fù)數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
復(fù)數(shù)的表示:
復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。
復(fù)數(shù)的幾何意義:
(1)復(fù)平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即
這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。
這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
復(fù)數(shù)的模:
復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復(fù)數(shù)模的性質(zhì):
復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當(dāng)b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時,z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時,z就是實數(shù)0。
人教版高二數(shù)學(xué)必學(xué)的知識點講解3
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時,y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
(1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人補充)
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)
人教版高二數(shù)學(xué)必學(xué)的知識點講解相關(guān)文章:
★ 人教版高二數(shù)學(xué)下冊知識點歸納,人教版高二數(shù)學(xué)下冊知識點歸納
★ 高中高二數(shù)學(xué)知識點口訣總結(jié)