高二數(shù)學(xué)關(guān)于函數(shù)的知識點總結(jié)
因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。以下是小編給大家整理的高二數(shù)學(xué)關(guān)于函數(shù)的知識點總結(jié),希望大家能夠喜歡!
高二數(shù)學(xué)關(guān)于函數(shù)的知識點總結(jié)1
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
高二數(shù)學(xué)關(guān)于函數(shù)的知識點總結(jié)2
(1)定義:
(2)函數(shù)存在反函數(shù)的條件:
(3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
七、常用的初等函數(shù):
(1)一元一次函數(shù):
(2)一元二次函數(shù):
一般式
兩點式
頂點式
二次函數(shù)求最值問題:首先要采用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區(qū)間也固定。如:
(2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標(biāo)何時在區(qū)間之內(nèi),何時在區(qū)間之外。
(3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).
等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根
注意:若在閉區(qū)間討論方程有實數(shù)解的情況,可先利用在開區(qū)間上實根分布的情況,得出結(jié)果,在令和檢查端點的情況。
(3)反比例函數(shù):
(4)指數(shù)函數(shù):
指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過點(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
(5)對數(shù)函數(shù):
對數(shù)函數(shù):y=(a>o,a≠1)圖象恒過點(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
高二數(shù)學(xué)關(guān)于函數(shù)的知識點總結(jié)3
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推導(dǎo)公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
函數(shù)名正弦余弦正切余切正割余割
在平面直角坐標(biāo)系xOy中,從點O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點的坐標(biāo)為(x,y)有
正弦函數(shù)sinθ=y/r
余弦函數(shù)cosθ=x/r
正切函數(shù)tanθ=y/x
余切函數(shù)cotθ=x/y
正割函數(shù)secθ=r/x
余割函數(shù)cscθ=r/y
正弦(sin):角α的對邊比上斜邊
余弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
余切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
余割(csc):角α的斜邊比上對邊
三角函數(shù)萬能公式
萬能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可
(4)對于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時,該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
萬能公式為:
設(shè)tan(A/2)=t
sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)
就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當(dāng)要求一串函數(shù)式最值的時候,就可以用萬能公式,推導(dǎo)成只含有一個變量的函數(shù),最值就很好求了.
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscαcα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對角線上兩個函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α)
高二數(shù)學(xué)關(guān)于函數(shù)的知識點總結(jié)相關(guān)文章:
★ 高二數(shù)學(xué)函數(shù)基本性質(zhì)知識總結(jié)
★ 高中數(shù)學(xué)函數(shù)知識歸納總結(jié)
★ 高二數(shù)學(xué)必修一函數(shù)的概念知識點與學(xué)習(xí)方法
★ 高二數(shù)學(xué)知識點總結(jié)(人教版)
★ 高二數(shù)學(xué)知識點總結(jié)詳細(xì)