高二數(shù)學(xué)的知識點整理大全
在學(xué)習新知識的同時還要復(fù)習以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學(xué)習。下面是小編給大家?guī)淼?a href='http://www.yishupeixun.net/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學(xué)的知識點整理大全,以供大家參考!
高二數(shù)學(xué)的知識點整理大全
基本概念
公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。
公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。
公理3:過不在同一條直線上的三個點,有且只有一個平面。
推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。
推論2:經(jīng)過兩條相交直線,有且只有一個平面。
推論3:經(jīng)過兩條平行直線,有且只有一個平面。
公理4:平行于同一條直線的兩條直線互相平行。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。
簡單隨機抽樣的定義:
一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
簡單隨機抽樣的特點:
(1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為:
(2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;
(3)簡單隨機抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。
(4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣
簡單抽樣常用方法:
(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當總體的個體數(shù)不太多時適宜采用抽簽法。
(2)隨機數(shù)表法:隨機數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率。
高二數(shù)學(xué)最新知識點整合
(1)總體和樣本:
①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
②把每個研究對象叫做個體.
③把總體中個體的總數(shù)叫做總體容量.
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
(2)簡單隨機抽樣,也叫純隨機抽樣。
就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的方法:
①抽簽法
②隨機數(shù)表法
③計算機模擬法
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調(diào)查對象群體中的每一個對象編號;
②準備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調(diào)查
高二上冊數(shù)學(xué)知識點分析
異面直線定義:不同在任何一個平面內(nèi)的兩條直線
異面直線性質(zhì):既不平行,又不相交.
異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線
異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無數(shù)個公共點.
三種位置關(guān)系的符號表示:aαa∩α=Aaα
(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;αβ
相交——有一條公共直線.α∩β=b
2、空間中的平行問題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,
那么這條直線和交線平行.線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個平面平行的判定定理
(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.
(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質(zhì)定理
(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)
3、空間中的垂直問題
(1)線線、面面、線面垂直的定義
兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.
平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.
面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.
4、空間角問題
(1)直線與直線所成的角
兩平行直線所成的角:規(guī)定為.
兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.
兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.
(2)直線和平面所成的角
平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.
平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.
在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,
在解題時,注意挖掘題設(shè)中主要信息:
(1)斜線上一點到面的垂線;
(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.
(3)二面角和二面角的平面角
二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.
二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
直二面角:平面角是直角的二面角叫直二面角.
兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
求二面角的方法
定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
高二數(shù)學(xué)的知識點整理大全相關(guān)文章:
★ 高二數(shù)學(xué)學(xué)考必考知識點概括
★ 高二年級數(shù)學(xué)知識點總結(jié)及復(fù)習資料