三角函數(shù)的公式歸納總結
三角函數(shù)的公式非常多,咋一看這么多的公式會讓同學們覺得這個知識點比較難,再加上三角函數(shù)本身就具有一定難度,很多人就覺得這個知識點非常不好學。下面是小編為大家整理的關于三角函數(shù)的公式歸納總結,希望對您有所幫助。歡迎大家閱讀參考學習!
倒數(shù)關系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
平常針對不同條件的常用的兩個公式
sin^2(α)+cos^2(α)=1
tan α _cot α=1
一個特殊公式
(sina+sinθ)_(sina-sinθ)=sin(a+θ)_sin(a-θ)
證明:(sina+sinθ)_(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] _2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)_sin(a-θ)
坡度公式
我們通常半坡面的鉛直高度h與水平高度l的比叫做坡度(也叫坡比), 用字母i表示,
即 i=h / l, 坡度的一般形式寫成 l : m 形式,如i=1:5.如果把坡面與水平面的夾角記作
a(叫做坡角),那么 i=h/l=tan a.
銳角三角函數(shù)公式
正弦: sin α=∠α的對邊/∠α 的斜邊
余弦:cos α=∠α的鄰邊/∠α的斜邊
正切:tan α=∠α的對邊/∠α的鄰邊
余切:cot α=∠α的鄰邊/∠α的對邊
二倍角公式
正弦
sin2A=2sinA·cosA
余弦
1.Cos2a=Cos^2(a)-Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
正切
tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化積
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
兩角和公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
積化和差
sinαsinβ =-[cos(α+β)-cos(α-β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
公式一:
設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α與 -α的三角函數(shù)值之間的關系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
相關文章: