六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高二數(shù)學必修三知識點總結

時間: 淑娟0 分享

高二這一年,是成績分化的分水嶺,成績會形成兩極分化:行則扶搖直上,不行則每況愈下。下面是小編為大家整理的高二數(shù)學知識點,歡迎閱讀,希望能幫到大家。

高二數(shù)學知識點總結1

【一】

(一)基本概念

必然事件

確定事件

1、事件不可能事件

不確定事件(隨機事件)

2、什么叫概率?

表示一個事件發(fā)生可能性的大小,記為P(事件名稱)=a;

練習一:判斷下列事件的類型

(1)今天是星期二,明天是星期三;

(2)擲一枚質(zhì)地均勻的正方體骰子,得到點數(shù)7;

(3)買彩票中了500萬大獎;

(4)拋兩枚硬幣都是正面朝上;

(5)從一副洗好的牌中(54張)中抽出紅桃A。

(二)預測隨機事件的概率

1、步驟:

(1)找出所有機會均等的結果,作為概率的分母

注:不能僅憑主觀判斷,而應利用列舉法、樹狀圖、列表法等方法找。

(2)明確關注結果,作為分子

2、用列表法或樹狀圖分析復雜情況下機會均等結果

【二】

一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:并(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

(2)四種運算律:交換律、結合律、分配律、德莫根律。

(3)事件的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。

二、概率定義

(1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

三、概率性質(zhì)與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發(fā)生,各次試驗結果相互獨立)時,要考慮二項概率公式.

【三】

1.輾轉相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

2.所謂輾轉相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).

3.更相減損術是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).

4.秦九韶算法是一種用于計算一元二次多項式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.

7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結果.

8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應的進制數(shù).

高二數(shù)學知識點總2

第一章 算法初步

算法的概念

算法的特點

(1)有限性:

一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.

(2)確定性:

算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當 是模棱兩可.

(3)順序性與正確性:

算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個 確定的 后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每 一 步都準確無誤,才能完成問題.

(4)不唯一性:

求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.

(5)普遍性:

很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經(jīng)過 有限、事先設計好的步驟加以解決.

程序框圖

1、程序框圖基本概念:

(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來 準確、直觀地表示算法的圖形。

一個程序框圖包括以下幾部分:

1.表示相應操作的程序框;

2.帶箭頭的流程線;

3.程序框外

4.必要文字說明。

(二)構成程序框的圖形符號及其作用

畫程序框圖的規(guī)則如下:

1、使用標準的圖形符號。

2、框圖一般按從上到下、從左到右的方向畫。

3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退 出點的唯一符號。

4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結果; 另一類是多分支判斷,有幾種不同的結果。

5、在圖形符號內(nèi)描述的語言要非常簡練清楚。

(三)、算法的三種基本邏輯結構:順序結構、條件結構、循環(huán)結構。

#FormatImgID_0# 1、順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。

順序結構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而

下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B

框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)

行B框所指定的操作。

2、條件結構:

條件結構是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結 構。條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B 框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可 以有多個判斷框。

3、循環(huán)結構:

在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況, 這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。 循環(huán)結構又稱重復結構。

循環(huán)結構可細分為兩類:

(1)一類是當型循環(huán)結構

如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

(2)另一類是直到型循環(huán)結構

如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

當型循環(huán)結構 直到型循環(huán)結構

輸入、輸出語句和賦值語句

賦值語句

(1)賦值語句的一般格式

(2)賦值語句的作用是將表達式所代表的值賦給變量;

(3)賦值語句中的“=”稱作賦值號,與數(shù)學中的等號的意義是不同的。賦值號的左右兩 邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;

(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或 算式;

(5)對于一個變量可以多次賦值。

注意:

①賦值號左邊只能是變量名字,而不能是表達式。如:2=X是錯誤的。

②賦值號左右不能對換。如“A=B”“B=A”的含義運行結果是不同的。

③不能利用賦值語句進行代數(shù)式的演算。(如化簡、因式分解、解方程等)

④賦值號“=”與數(shù)學中的等號意義不同。

注意:

在IF—THEN—ELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;END IF表示條件語句的結束。計算機在執(zhí)行時,首先對IF后的條件進行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2

第二章 統(tǒng)計

簡單隨機抽樣

1.總體和樣本:

1.研究對象的全體叫做總體.

2.每個研究對象叫做個體.

3.總體中個體的總數(shù)叫做總體容量.

4.樣本容量:一般從總體中隨機抽取一部分:

研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.

2.簡單隨機抽樣:

從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。

特點:

每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間 無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在 總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

3.簡單隨機抽樣常用的方法:

(1)抽簽法;

⑵隨機數(shù)表法;

⑶計算機模擬法;

⑷使用統(tǒng)計軟件直接抽取。

4.抽簽法:

(1)給調(diào)查對象群體中的每一個對象編號;

(2)準備抽簽的工具,實施抽簽

(3)對樣本中的每一個個體進行測量或調(diào)查

5.隨機數(shù)表法

系統(tǒng)抽樣

把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣 本。第一個樣本采用簡單隨機抽樣的辦法抽取。

K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

分層抽樣

先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。

兩種方法:

(1)按比例分層抽樣:

根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取樣本的方法。

(2)不按比例分層抽樣:

有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便 于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體 時,則需要先對各層的數(shù)據(jù)資料進行加權處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢 復到總體中各層實際的比例結構。

2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征

1、平均值:

2、.樣本標準差:

4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變

(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍

2.3.2兩個變量的線性相關

1、概念: (1)回歸直線方程 (2)回歸系數(shù)

2.回歸直線方程的應用

(1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關系

(2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。

第三章 概 率

隨機事件的概率及概率的意義

1、基本概念:

(1)必然事件:在某種條件下,一定會發(fā)生的事件,叫做必然事件;

(2)不可能事件:在某種條件下,一定不會發(fā)生的事件,叫做不可能事件;

(3)隨機事件:在某種條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件;

(4)基本事件:

試驗中不能再分的最簡單的隨機事件,其他事件可以用它們來描繪,這樣 的 時間叫基本事件;

(5)基本事件空間:

所有基本事件構成的集合,叫做基本事件空間,用大寫希臘字母Ω表示;

(5)頻數(shù)、頻率:

在相同的條件下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗 中事件A出現(xiàn)的次數(shù)為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例為事 件A出現(xiàn)的頻率;

(6)概率:

在n次重復進行的試驗中,時間A發(fā)生的頻率m\n,當n很大時,總是在某個常 熟附近擺動,隨著n的增加,擺動幅度越來越小,這時就把這個常熟叫做事件A 的概率,記作P(A),0≤P(A)≤1;

概率的基本性質(zhì)

1.必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;

2.當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);

3.若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于 是有P(A)=1—P(B);

4.互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不 會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2) 事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事 件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2) 事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。

古典概型

(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。

(2)古典概型的解題步驟;

①求出總的基本事件數(shù);

②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=#FormatImgID_5#

幾何概型

基本概念:

(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積) 成比例,則稱這樣的概率模型為幾何概率模型;

(2)幾何概型的概率公式:

P(A)=

(3)幾何概型的特點:

1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;

2)每個基本事件出現(xiàn)的可能性相等.

高二數(shù)學知識點總結3

一、簡諧運動

1.機械振動:機械振動是指物體在平衡位置附近所做的往復運動.

2.回復力:回復力是指振動物體所受到的指向平衡位置的力,是由作用效果來命名的.回復力的作用效果總是將物體拉回平衡位置,從而使物體圍繞平衡位置做周期性的往復運動?;貜土κ怯烧駝游矬w所受力的合力(如彈簧振子)沿振動方向的分力(如單擺)提供的,這就是回復力的來源。

3.平衡位置:平衡位置是指物體在振動中所受的回復力為零的位置,此時振子未必一定處于平衡狀態(tài).比如單擺經(jīng)過平衡位置時,雖然回復力為零,但合外力并不為零,還有向心力.

4.描述振動的物理量:

①位移總是相對于平衡位置而言的,方向總是由平衡位置指向振子所在的位置—總是背離平衡位置向外;②振幅是物體離開平衡位置的最大距離,它描述的是振動的強弱,振幅是標量;③頻率是單位時間內(nèi)完成全振動的次數(shù);④相位用來描述振子振動的步調(diào)。如果振動的振動情況完全相反,則振動步調(diào)相反,為反相位.

5.簡諧運動:A、簡諧運動的回復力和位移的變化規(guī)律;B、單擺的周期。由本身性質(zhì)決定的周期叫固有周期,與擺球的質(zhì)量、振幅(振動的總能量)無關。

6.簡諧運動的表達式和圖象:x=Asin(ωt+φ0) 簡諧運動的圖象描述的是一個質(zhì)點做簡諧運動時,在不同時刻的位移,因而振動圖象反映了振子的運動規(guī)律(注意:振動圖象不是運動軌跡)。由振動圖象還可以確定振子某時刻的振動方向.

7.簡諧運動的能量:不計摩擦和空氣阻力的振動是理想化的振動,此時系統(tǒng)只有重力或彈力做功,機械能守恒。振動的能量和振幅有關,振幅越大,振動的能量越大。

高二數(shù)學知識點總結4

隨機事件的概率

平面直角坐標系

證明不等式的方法

絕對值不等式

均勻隨機數(shù)的產(chǎn)生

隨機事件的概率

概率的基本性質(zhì)

古典概型

不等式與不等關系

基本不等式

等差數(shù)列

簡單的邏輯連接詞

全稱量詞與存在量詞

基本不等式的證明

正弦定理

充要條件

三角函數(shù)的誘導公式

函數(shù)y=Asin(wx+φ)的圖像

正弦函數(shù)、余弦函數(shù)的圖象

等比數(shù)列

四種命題

三角函數(shù)模型的簡單應用

任意角的三角函數(shù)

《隨機數(shù)的產(chǎn)生》

不等式

等差數(shù)列的前N項和

任意角的三角函數(shù)

函數(shù)y=Asin(ωx+ψ)的圖象

任意角和弧度制

正弦函數(shù)、余弦函數(shù)的圖象

高二數(shù)學知識點總結5

練習:

已知方程 表示焦點在x軸

上的橢圓,則m的取值范圍是 .

(0,4)

(1,2)

練習:求適合下列條件的橢圓的標準方程:

(2)焦點為F1(0,-3),F2(0,3),且a=5.

(3)兩個焦點分別是F1(-2,0)、F2(2,0),且過P(2,3)點;

(4)經(jīng)過點P(-2,0)和Q(0,-3).

小結:求橢圓標準方程的步驟:

①定位:確定焦點所在的坐標軸;

②定量:求a, b的值.

例1 :將圓 = 4上的點的橫坐標保持不變,

縱坐標變?yōu)樵瓉淼囊话?,求所的曲線的方程,

并說明它是什么曲線?

解:

將圓按照某個方向均勻地壓縮(拉長),可以得到橢圓。

2)利用中間變量求點的軌跡方程

的方法是解析幾何中常用的方法;

練習

1 橢圓上一點P到一個焦點的距離為5,

則P到另一個焦點的距離為( )

A.5 B.6 C.4 D.10

A

2.橢圓     的焦點坐標是( )

A.(±5,0)?      B.(0,±5) ?

C.(0,±12)?       D.(±12,0)

C

3.已知橢圓的方程為 ,焦點在X軸上,

則其焦距為( )

A 2 B 2

C 2 D 2

A

,焦點在y軸上的橢圓的標準方程

l 是 __________.

例2已知圓A:(x+3)2+y2=100,圓A內(nèi)一

定點B(3,0),圓P過B點且與圓A內(nèi)切,求圓心

P的軌跡方程.

解:設|PB|=r.

∵圓P與圓A內(nèi)切,圓A的半徑為10.

∴兩圓的圓心距|PA|=10-r,

即|PA|+|PB|=10(大于|AB|).

∴點P的軌跡是以A、B兩點為焦點的橢圓.

∴2a=10,

2c=|AB|=6,

∴a=5,c=3.

∴b2=a2-c2=25-9=16.

即點P的軌跡方程為 =1.

例3在⊿ABC中,BC=24,AC、AB邊上的中線之

和為39,求⊿ABC的重心的軌跡方程.

搜狗截圖20200626191129.png

練習

已知F1、F2是橢圓 的焦點,P為橢圓上

一點,且 ,則 的面積為_____.

高二數(shù)學必修三知識點總結相關文章

高中數(shù)學必修三公式匯總

高中數(shù)學必修三目錄人教版

高三年級數(shù)學必修三知識點學習總結

高三數(shù)學必修三知識點總復習資料

高三年級數(shù)學必修三知識點

高三數(shù)學必修三總復習資料

高中數(shù)學必修三方差計算公式

高中數(shù)學必修三重點知識點復習

高中數(shù)學必修三算法初步知識點講解

高中數(shù)學必修三公式匯總

高二數(shù)學必修三知識點總結

高二這一年,是成績分化的分水嶺,成績會形成兩極分化:行則扶搖直上,不行則每況愈下。下面是小編為大家整理的高二數(shù)學知識點,歡迎閱讀,希望能幫到大家。高二數(shù)學知識點總結1【一】(一)基本概念必然事件確定事
推薦度:
點擊下載文檔文檔為doc格式
471455