六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) > 利用反向思維解決高二數(shù)學(xué)問題是很好的應(yīng)試技巧

利用反向思維解決高二數(shù)學(xué)問題是很好的應(yīng)試技巧

時(shí)間: 騰宇1218 分享

利用反向思維解決高二數(shù)學(xué)問題是很好的應(yīng)試技巧

  數(shù)學(xué)學(xué)習(xí)離不開做題,但是我們不能盲目打題海戰(zhàn)術(shù),要做每一道題都能夠有所收獲,就需要我們善于總結(jié)反思,反思解題過程和解題思路。下面是小編為大家?guī)淼睦梅聪蛩季S解決高二數(shù)學(xué)問題是很好的應(yīng)試技巧,希望能幫到大家!

  利用反向思維解決高二數(shù)學(xué)問題是很好的應(yīng)試技巧

  1、反思解題本身是否正確

  由于在解題的過程中,可能會(huì)出現(xiàn)這樣或那樣的錯(cuò)誤,因此在解完一道題后就很有必要進(jìn)行審查自己的解題是否混淆了概念,是否忽視了隱含條件,是否特殊代替一般,是否忽視特例,邏輯上是否有問題,運(yùn)算是否正確,題目本身是否有誤等。這樣做是為了保證解題無誤,這是解題后最基本的要求,真正認(rèn)實(shí)到解題后思考的重要性。

  2、反思有無其它解題方法

  對(duì)于同一道題,從不同的角度去分析研究,可能會(huì)得到不同的啟示,從而引出多種不同的解法,當(dāng)然,我們的目的不在于去湊幾種解法,而是通過不同的觀察側(cè)面,使我們的思維觸角伸向不同的方向,不同層次,發(fā)展學(xué)生的發(fā)散思維能力。

  3、反思結(jié)論或性質(zhì)在解題中的作用

  有些題目本身可能很簡(jiǎn)單,但是它的結(jié)論或做完這道題目本身用到的性質(zhì)卻有廣泛的應(yīng)用,如果僅僅滿足于解答題目的本身,而忽視對(duì)結(jié)論或性質(zhì)應(yīng)用的思考、探索,那就可能會(huì)“揀到一粒芝麻,丟掉一個(gè)西瓜“。一道題中本身必然包含了具體的數(shù)學(xué)知識(shí)和方法,你要通過這道題把本題所蘊(yùn)涵的知識(shí)和方法提煉出來,總結(jié)歸納.像函數(shù),研究的不外乎是定義域,值域,單調(diào)性,最值等.每做一個(gè)題就可以把這些東西復(fù)習(xí)一下,這樣才能對(duì)的起你做的題.

  4、反思題目能否變換引申

  改變題目的條件,會(huì)導(dǎo)出什么新結(jié)論;保留題目的條件結(jié)論能否進(jìn)一步加強(qiáng);條件作類似的變換,結(jié)論能擴(kuò)大到一般等等。象這樣富有創(chuàng)造性的全方位思考,常常是發(fā)現(xiàn)新知識(shí)、認(rèn)識(shí)新知識(shí)的突破口。

  5、反思解決問題的思維方法能否遷移

  解完一道題目后,不妨深思一下解題程序,有時(shí)會(huì)突然發(fā)現(xiàn):這種解決問題的思維模式竟然體現(xiàn)了一訓(xùn)重要的數(shù)學(xué)思想方法,它對(duì)于解決一類問題大有幫助。這樣,有利于深化對(duì)數(shù)學(xué)知識(shí)和方法的認(rèn)識(shí),真正領(lǐng)悟到數(shù)學(xué)的思想和知識(shí)的結(jié)構(gòu),促進(jìn)其創(chuàng)造性思維能力的發(fā)展,從而充分發(fā)揮自己的智能和潛能。

  高二數(shù)學(xué):幾何的三大問題

  平面幾何作圖限制只能用直尺、圓規(guī),而這里所謂的直尺是指沒有刻度只能畫直線的尺。用直尺與圓規(guī)當(dāng)然可以做出許多種之圖形,但有些圖形如正七邊形、正九邊形就做不出來。有些問題看起來好像很簡(jiǎn)單,但真正做出來卻很困難,這些問題之中最有名的就是所謂的三大問題。

  幾何三大問題是:

  1、化圓為方-求作一正方形使其面積等於一已知圓;

  2、三等分任意角;

  3、倍立方-求作一立方體使其體積是一已知立方體的二倍。

  圓與正方形都是常見的幾何圖形,但如何作一個(gè)正方形和已知圓等面積呢?若已知圓的半徑為1則其面積為π(1)2=π,所以化圓為方的問題等於去求一正方形其面積為π,也就是用尺規(guī)做出長(zhǎng)度為π1/2的線段(或者是π的線段)。

  三大問題的第二個(gè)是三等分一個(gè)角的問題。對(duì)於某些角如90。、180。三等分并不難,但是否所有角都可以三等分呢?例如60。,若能三等分則可以做出20。的角,那麼正18邊形及正九邊形也都可以做出來了(注:圓內(nèi)接一正十八邊形每一邊所對(duì)的圓周角為360。/18=20。)。其實(shí)三等分角的問題是由求作正多邊形這一類問題所引起來的。

  第三個(gè)問題是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾經(jīng)記述一個(gè)神話提到說有一個(gè)先知者得到神諭必須將立方形的祭壇的體積加倍,有人主張將每邊長(zhǎng)加倍,但我們都知道那是錯(cuò)誤的,因?yàn)轶w積已經(jīng)變成原來的8倍。

  這些問題困擾數(shù)學(xué)家一千多年都不得其解,而實(shí)際上這三大問題都不可能用直尺圓規(guī)經(jīng)有限步驟可解決的。

  1637年笛卡兒創(chuàng)建解析幾何以後,許多幾何問題都可以轉(zhuǎn)化為代數(shù)問題來研究。1837年旺策爾(Wantzel)給出三等分任一角及倍立方不可能用尺規(guī)作圖的證明。1882年林得曼(Linderman)也證明了π的超越性(即π不為任何整數(shù)系數(shù)多次式的根),化圓為方的不可能性也得以確立。


相關(guān)文章:

1.高中數(shù)學(xué)常考題型答題技巧與方法及順口溜

2.2017高二數(shù)學(xué)競(jìng)賽題含答案

3.高三備考:最全高中數(shù)學(xué)解題方法與答題注意事項(xiàng)

4.高中生數(shù)學(xué)期末考試有哪些復(fù)習(xí)技巧?教你使用這三種方法提高成績(jī)

5.高考數(shù)學(xué)高分技巧,不同題型的答題套路,輕松搞定數(shù)學(xué)8大學(xué)習(xí)法

66536