高二數(shù)學(xué)四步學(xué)習(xí)方法
復(fù)習(xí)數(shù)學(xué)時,要制定好計劃,不但要有本學(xué)期大的規(guī)劃,還要有每月、每周、每天的小計劃,計劃要與老師的復(fù)習(xí)計劃吻合,下面給大家分享一些關(guān)于高二數(shù)學(xué)四步學(xué)習(xí)方法,希望對大家有所幫助。
高二數(shù)學(xué)四步學(xué)習(xí)方法
1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣
建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
2、及時了解、掌握常用的數(shù)學(xué)思想和方法
學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數(shù)學(xué)題時,也要注意解題思維策略問題,經(jīng)常要思考:選擇什么角度來進入,應(yīng)遵循什么原則性的東西。高中數(shù)學(xué)中經(jīng)常用到的數(shù)學(xué)思維策略有:以簡馭繁、數(shù)形結(jié)合、進退互用、化生為熟、正難則反、倒順相還、動靜轉(zhuǎn)換、分合相輔等。
3、逐步形成 “以我為主”的學(xué)習(xí)模式
數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動地參與學(xué)習(xí)過程,養(yǎng)成實事求是的科學(xué)態(tài)度,獨立思考、勇于探索的創(chuàng)新精神;正確對待學(xué)習(xí)中的困難和挫折,敗不餒,勝不驕,養(yǎng)成積極進取,不屈不撓,耐挫折的優(yōu)良心理品質(zhì);在學(xué)習(xí)過程中,要遵循認識規(guī)律,善于開動腦筋,積極主動去發(fā)現(xiàn)問題,注重新舊知識間的內(nèi)在聯(lián)系,不滿足于現(xiàn)成的思路和結(jié)論,經(jīng)常進行一題多解,一題多變,從多側(cè)面、多角度思考問題,挖掘問題的實質(zhì)。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。對課本知識既要能鉆進去,又要能跳出來,結(jié)合自身特點,尋找最佳學(xué)習(xí)方法。
4、針對自己的學(xué)習(xí)情況,采取一些具體的措施
記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
建立數(shù)學(xué)糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
高二數(shù)學(xué)解題要遵循的三要素
首先是精選題目,做到少而精。只有解決質(zhì)量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。
其次是分析題目。解答任何一個數(shù)學(xué)題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當然在這個過程中也反映出對數(shù)學(xué)基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
最后,題目總結(jié)。解題不是目的,我們是通過解題來檢驗我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機會
高二數(shù)學(xué)考試得高分的4個給力方法
1.審題與解題的關(guān)系
有的考生對審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒有吃透,至于如何從題目中挖掘隱含條件、啟發(fā)解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,準確地把握題目中的關(guān)鍵詞與量?如“至少”,“a>0”,自變量的取值范圍等,從中獲取盡可能多的信息,才能迅速找準解題方向。
2.“會做”與“得分”的關(guān)系
要將你的解題策略轉(zhuǎn)化為得分點,主要靠準確完整的數(shù)學(xué)語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現(xiàn)“會而不對”“對而不全”的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的“跳步”,使很多人丟失1/3以上得分,代數(shù)論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由于不善于把“圖形語言”準確地轉(zhuǎn)譯為“文字語言”,得分少得可憐;再如去年理17題三角函數(shù)圖像變換,許多考生“心中有數(shù)”卻說不清楚,扣分者也不在少數(shù)。
3.快與準的關(guān)系
只有“準”才能得分,只有“準”你才可不必考慮再花時間檢查,而“快”是平時訓(xùn)練的結(jié)果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如去年第21題應(yīng)用題,此題列出分段函數(shù)解析式并不難,但是相當多的考生在匆忙中把二次函數(shù)甚至一次函數(shù)都算錯,盡管后繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的。適當?shù)芈稽c、準一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。
4.難題與容易題的關(guān)系
拿到試卷后,應(yīng)將全卷通覽一遍,一般來說應(yīng)按先易后難、先簡后繁的順序作答。近年來考題的順序并不完全是難易的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打“持久戰(zhàn)”,那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數(shù)學(xué)試題已從“一題把關(guān)”轉(zhuǎn)為“多題把關(guān)”,因此解答題都設(shè)置了層次分明的“臺階”,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有“咬手”的關(guān)卡,看似難做的題也有可得分之處。所以考試中看到“容易”題不可掉以輕心,看到難題不要膽怯,冷靜思考、仔細分析,定能得到應(yīng)有的分數(shù)。
高二數(shù)學(xué)四步學(xué)習(xí)方法相關(guān)文章:
★ 高二數(shù)學(xué)學(xué)習(xí)方法和技巧大全
★ 高二數(shù)學(xué)的學(xué)習(xí)特點和學(xué)習(xí)方法分析
★ 高二數(shù)學(xué)聽課記錄與高中數(shù)學(xué)學(xué)習(xí)方法4個步驟
★ 理高二數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)
★ 高二數(shù)學(xué)的學(xué)習(xí)方法