高考數(shù)學必看題型全歸納資料
高考數(shù)學必看題型全歸納資料你看過嗎?高考數(shù)學涉及方方面面,涵蓋的知識點也很多,數(shù)學公式也很多。以下是小編精心收集整理的高考數(shù)學必看題型全歸納資料,下面小編就和大家分享,來欣賞一下吧。
高考數(shù)學必看題型全歸納資料
1.選擇題——“不擇手段”
題型特點:
(1)概念性強:數(shù)學中的每個術(shù)語、符號,乃至習慣用語,往往都有明確具體的含義,這個特點反映到選擇題中,表現(xiàn)出來的就是試題的概念性強,試題的陳述和信息的傳遞,都是以數(shù)學的學科規(guī)定與習慣為依據(jù),決不標新立異。
(2)量化突出:數(shù)量關(guān)系的研究是數(shù)學的一個重要的組成部分,也是數(shù)學考試中一項主要的內(nèi)容,在高考的數(shù)學選擇題中,定量型的試題所占的比重很大,而且許多從形式上看為計算定量型選擇題,其實不是簡單或機械的計算問題,其中往往蘊含了對概念、原理、性質(zhì)和法則的考查,把這種考查與定量計算緊密地結(jié)合在一起,形成了量化突出的試題特點。
(3)充滿思辨性:這個特點源于數(shù)學的高度抽象性、系統(tǒng)性和邏輯性。作為數(shù)學選擇題,尤其是用于選擇性考試的高考數(shù)學試題,只憑簡單計算或直觀感知便能正確作答的試題不多,幾乎可以說并不存在,絕大多數(shù)的選擇題,為了正確作答,或多或少總是要求考生具備一定的觀察、分析和邏輯推斷能力。思辨性的要求充滿題目的字里行間。
(4)形數(shù)兼?zhèn)洌簲?shù)學的研究對象不僅是數(shù),還有圖形,而且對數(shù)和圖形的討論與研究,不是孤立開來分割進行,而是有分有合,將它們辯證統(tǒng)一起來。這個特色在高中數(shù)學中已經(jīng)得到充分的顯露。因此,在高考的數(shù)學選擇題中,便反映出形數(shù)兼?zhèn)溥@一特點,其表現(xiàn)是幾何選擇題中常常隱藏著代數(shù)問題,而代數(shù)選擇題中往往又寓有幾何圖形的問題。因此,數(shù)形結(jié)合與形數(shù)分離的解題方法是高考數(shù)學選擇題的一種重要且有效的思想方法與解題方法。
(5)解法多樣化:以其他學科比較,“一題多解”的現(xiàn)象在數(shù)學中表現(xiàn)突出,尤其是數(shù)學選擇題由于它有備選項,給試題的解答提供了豐富的有用信息,有相當大的提示性,為解題活動展現(xiàn)了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利于對考生思維深度的考查。
解題策略:
(1)注意審題。把題目多讀幾遍,弄清這個題目求什么,已知什么,求、知之間有什么關(guān)系,把題目搞清楚了再動手答題。
(2)答題順序不一定按題號進行??上葟淖约菏煜さ念}目答起,從有把握的題目入手,使自己盡快進入到解題狀態(tài),產(chǎn)生解題的激情和欲望,再解答陌生或不太熟悉的題目。若有時間,再去拼那些把握不大或無從下手的題。這樣也許能超水平發(fā)揮。
(3)數(shù)學選擇題大約有70%的題目都是直接法,要注意對符號、概念、公式、定理及性質(zhì)等的理解和使用,例如函數(shù)的性質(zhì)、數(shù)列的性質(zhì)就是常見題目。
(4)挖掘隱含條件,注意易錯易混點,例如集合中的空集、函數(shù)的定義域、應(yīng)用性問題的限制條件等。
(5)方法多樣,不擇手段。高考試題凸現(xiàn)能力,小題要小做,注意巧解,善于使用數(shù)形結(jié)合、特值(含特殊值、特殊位置、特殊圖形)、排除、驗證、轉(zhuǎn)化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,杜絕小題大做,如果確實沒有思路,也要堅定信心,“題可以不會,但是要做對”,即使是“蒙”也有25%的勝率。
(6)控制時間。一般不要超過40分鐘,最好是25分鐘左右完成選擇題,爭取又快又準,為后面的解答題留下充裕的時間,防止“超時失分”。
2.填空題——“直撲結(jié)果”
題型特點:
填空題和選擇題同屬客觀性試題,它們有許多共同特點:其形態(tài)短小精悍,考查目標集中,答案簡短、明確、具體,不必填寫解答過程,評分客觀、公正、準確等等,不過填空題和選擇題也有質(zhì)的區(qū)別。首先,表現(xiàn)為填空題沒有備選項,因此,解答時既有不受誘誤的干擾之好處,又有缺乏提示的幫助之不足。對考生獨立思考和求解,在能力要求上會高一些。長期以來,填空題的答對率一直低于選擇題的答對率,也許這就是一個重要的原因。其次,填空題的解構(gòu),往往是在一個正確的命題或斷言中,抽去其中的一些內(nèi)容(即可以使條件,也可以是結(jié)論),留下空位,讓考生獨立填上,考查方法比較靈活,在對題目的閱讀理解上,較之選擇題有時會顯得較為費勁。當然并非常常如此,這將取決于命題者對試題的設(shè)計意圖。
填空題的考點少,目標集中。否則,試題的區(qū)分度差,其考試的信度和效度都難以得到保證。這是因為:填空題要是考點多,解答過程長,影響結(jié)論的因素多,那么對于答錯的考生便難以知道其出錯的真正原因,有的可能是一竅不通,入手就錯了;有的可能只是到了最后一步才出錯,但他們在答卷上表現(xiàn)出來的情況一樣,得相同的成績,盡管他們的水平存在很大的差異。
解題策略:
由于填空題和選擇題有相似之處,所以有些解題策略是可以共用的,在此不再多講,只針對不同的特征給幾條建議:
一是填空題絕大多數(shù)是計算型(尤其是推理計算型)和概念(或性質(zhì))判斷性的試題,應(yīng)答時必須按規(guī)則進行切實的計算或合乎邏輯的推演和判斷;
二是作答的結(jié)果必須是數(shù)值準確,形式規(guī)范,例如集合形式的表示、函數(shù)表達式的完整等,結(jié)果稍有毛病便是零分;
三是《考試說明》中對解答填空題提出的要求是“正確、合理、迅速”,因此,解答的基本策略是:快——運算要快,力戒小題大做;穩(wěn)——變形要穩(wěn),防止操之過急;全——答案要全,避免對而不全;活——解題要活,不要生搬硬套;細——審題要細,不能粗心大意。
3.解答題——“步步為營”
題型特點:
解答題與填空題比較,同居提供型的試題,但也有本質(zhì)的區(qū)別。
首先,解答題應(yīng)答時,考生不僅要提供出最后的結(jié)論,還得寫出或說出解答過程的主要步驟,提供合理、合法的說明,填空題則無此要求,只要填寫結(jié)果,省略過程,而且所填結(jié)果應(yīng)力求簡練、概括的準確;
其次,試題內(nèi)涵解答題比起填空題要豐富得多,解答題的考點相對較多,綜合性強,難度較高,解答題成績的評定不僅看最后的結(jié)論,還要看其推演和論證過程,分情況判定分數(shù),用以反映其差別,因而解答題命題的自由度較之填空題大得多。
評分辦法:
數(shù)學高考閱卷評分實行懂多少知識給多少分的評分辦法,叫做“分段評分”。而考生“分段得分”的基本策略是:會做的題目力求不失分,部分理解的題目力爭多得分。會做的題目若不注意準確表達和規(guī)范書寫,常常會被“分段扣分”,有閱卷經(jīng)驗的老師告訴我們,解答立體幾何題時,用向量方法處理的往往扣分少。
解答題閱卷的評分原則一般是:第一問,錯或未做,而第二問對,則第二問得分全給;前面錯引起后面方法用對但結(jié)果出錯,則后面給一半分。
解題策略:
(1)常見失分因素:
①對題意缺乏正確的理解,應(yīng)做到慢審題快做題;
②公式記憶不牢,考前一定要熟悉公式、定理、性質(zhì)等;
③思維不嚴謹,不要忽視易錯點;
④解題步驟不規(guī)范,一定要按課本要求,否則會因不規(guī)范答題失分,避免“對而不全”如解概率題,要給出適當?shù)奈淖终f明,不能只列幾個式子或單純的結(jié)論,表達不規(guī)范、字跡不工整等非智力因素會影響閱卷老師的“感情分”;
⑤計算能力差失分多,會做的一定不能放過,不能一味求快,例如平面解析中的圓錐曲線問題就要求較強的運算能力;
⑥輕易放棄試題,難題不會做,可分解成小問題,分步解決,如最起碼能將文字語言翻譯成符號語言、設(shè)應(yīng)用題未知數(shù)、設(shè)軌跡的動點坐標等,都能拿分。也許隨著這些小步驟的羅列,還能悟出解題的靈感。
(2)何為“分段得分”:
對于同一道題目,有的人理解的深,有的人理解的淺;有的人解決的多,有的人解決的少。為了區(qū)分這種情況,高考的閱卷評分辦法是懂多少知識就給多少分。這種方法我們叫它“分段評分”,或者“踩點給分”——踩上知識點就得分,踩得多就多得分。與之對應(yīng)的“分段得分”的基本精神是,會做的題目力求不失分,部分理解的題目力爭多得分。
對于會做的題目,要解決“會而不對,對而不全”這個老大難問題。
有的考生拿到題目,明明會做,但最終答案卻是錯的———會而不對。
有的考生答案雖然對,但中間有邏輯缺陷或概念錯誤,或缺少關(guān)鍵步驟———對而不全。
因此,會做的題目要特別注意表達的準確、考慮的周密、書寫的規(guī)范、語言的科學,防止被“分段扣分”。經(jīng)驗表明,對于考生會做的題目,閱卷老師則更注意找其中的合理成分,分段給點分,所以“做不出來的題目得一二分易,做得出來的題目得滿分難”。
對絕大多數(shù)考生來說,更為重要的是如何從拿不下來的題目中分段得點分。我們說,有什么樣的解題策略,就有什么樣的得分策略。把你解題的真實過程原原本本寫出來,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等于失敗。特別是那些解題層次明顯的題目,或者是已經(jīng)程序化了的方法,每一步得分點的演算都可以得分,最后結(jié)論雖然未得出,但分數(shù)卻已過半,這叫“大題拿小分”。
②跳步答題:解題過程卡在某一過渡環(huán)節(jié)上是常見的。這時,我們可以先承認中間結(jié)論,往后推,看能否得到結(jié)論。
如果不能,說明這個途徑不對,立即改變方向;
如果能得出預期結(jié)論,就回過頭來,集中力量攻克這一“卡殼處”。
由于考試時間的限制,“卡殼處”的攻克如果來不及了,就可以把前面的寫下來,再寫出“證實某步之后,繼續(xù)有……”一直做到底。也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補在后面。若題目有兩問,第一問想不出來,可把第一問作“已知”,先做第二問,這也是跳步解答。
③退步解答:“以退求進”是一個重要的解題策略。如果你不能解決所提出的問題,那么,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結(jié)論退到較弱的結(jié)論。總之,退到一個你能夠解決的問題。為了不產(chǎn)生“以偏概全”的誤解,應(yīng)開門見山寫上“本題分幾種情況”。這樣,還會為尋找正確的、一般性的解法提供有意義的啟發(fā)。
④輔助解答:一道題目的完整解答,既有主要的實質(zhì)性的步驟,也有次要的輔助性的步驟。實質(zhì)性的步驟未找到之前,找輔助性的步驟是明智之舉。
如:準確作圖,把題目中的條件翻譯成數(shù)學表達式,設(shè)應(yīng)用題的未知數(shù)等。答卷中要做到穩(wěn)扎穩(wěn)打,字字有據(jù),步步準確,盡量一次成功,提高成功率。試題做完后要認真做好解后檢查,看是否有空題,答卷是否準確,所寫字母與題中圖形上的是否一致,格式是否規(guī)范,尤其是要審查字母、符號是否抄錯,在確信萬無一失后方可交卷。
(3)能力不同,要求有變:
由于考生的層次不同,面對同一張數(shù)學卷,要盡可能發(fā)揮自己的水平,考試策略也有所不同。
針對基礎(chǔ)較差、以二類本科為最高目標的考生而言要“以穩(wěn)取勝”——這類考生除了知識方面的缺陷外,“會而不對,對而不全”是這類考生的致命傷。丟分的主要原因在于審題失誤和計算失誤??荚嚂r要克服急躁心態(tài),如果發(fā)現(xiàn)做不下去,就盡早放棄,把時間用于檢查已做的題,或回頭再做前面沒做的題。記住,只要把你會做的題都做對,你就是最成功的人!
針對二本及部分一本的同學而言要“以準取勝”——他們基礎(chǔ)比較扎實,但也會犯低級錯誤,所以,考試時要做到準確無誤(指會做的題目),除了最后兩題的第三問不一定能做出,其他題目大都在“火力范圍”內(nèi)。但前面可能遇到“攔路虎”,要敢于放棄,把會做的題做得準確無誤,再回來“打虎”。
針對第一志愿為名牌大學的考試而言要“以新取勝”——這些考生的主攻方向是能力型試題,在快速、正確做好常規(guī)試題的前提下,集中精力做好能力題。這些試題往往思考強度大,運算要求高,解題需要新的思想和方法,要
靈活把握,見機行事。如果遇到不順手的試題,也不必恐慌,可能是試題較難,大家都一樣,此時,使會做的題不丟分就是上策。
高考數(shù)學必備公式匯總
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
橢圓面積計算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數(shù)為體,公式為用。
橢圓形物體 體積計算公式橢圓 的 長半徑__短半徑__PAI__高
弧長公式 l=a__r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2__l__r
錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s__h 圓柱體 V=pi__r2h
圖形周長 面積 體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)
和:(a+b+c)__(a+b-c)__1/4
高考數(shù)學復習重點
第一,函數(shù)與導數(shù)
主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用
這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統(tǒng)計
這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數(shù)。