關(guān)于高考數(shù)學(xué)的答題技巧與方法
想要學(xué)好高中數(shù)學(xué),考試中取得優(yōu)異的成績(jī),就要掌握解題技巧。那么高考數(shù)學(xué)的答題技巧與方法有哪些呢?以下是小編整理的一些關(guān)于高考數(shù)學(xué)的答題技巧與方法,僅供參考。
高考數(shù)學(xué)答題套路整理
1、三角變換與三角函數(shù)的性質(zhì)問(wèn)題
解題方法:①不同角化同角;②降冪擴(kuò)角;③化f(x)=Asin(ωx+φ)+h ;④結(jié)合性質(zhì)求解。
答題步驟:
①化簡(jiǎn):三角函數(shù)式的化簡(jiǎn),一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個(gè)整體,利用y=sin x,y=cos x的性質(zhì)確定條件。
③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。
2、解三角形問(wèn)題
解題方法:
(1) ①化簡(jiǎn)變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
答題步驟:
①定條件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來(lái),然后確定轉(zhuǎn)化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。
③求結(jié)果。
3、數(shù)列的通項(xiàng)、求和問(wèn)題
解題方法:①先求某一項(xiàng),或者找到數(shù)列的關(guān)系式;②求通項(xiàng)公式;③求數(shù)列和通式。
答題步驟:
①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。
②求通項(xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。
③定方法:根據(jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
4、離散型隨機(jī)變量的均值與方差
解題思路:
(1)①標(biāo)記事件;②對(duì)事件分解;③計(jì)算概率。
(2)①確定ξ取值;②計(jì)算概率;③得分布列;④求數(shù)學(xué)期望。
答題步驟:
①定元:根據(jù)已知條件確定離散型隨機(jī)變量的取值。
②定性:明確每個(gè)隨機(jī)變量取值所對(duì)應(yīng)的事件。
③定型:確定事件的概率模型和計(jì)算公式。
④計(jì)算:計(jì)算隨機(jī)變量取每一個(gè)值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
高考數(shù)學(xué)答題竅門
1、高考數(shù)學(xué)答題審題要慢,答題要快
有些考生只知道一味求快,往往高考數(shù)學(xué)題意未清,便匆忙動(dòng)筆,結(jié)果誤入歧途,即所謂欲速則不達(dá),看錯(cuò)一個(gè)字可能會(huì)遺憾終生,所以審題一定要慢,有了這個(gè)“慢”,才能形成完整的合理的解題策略,才有答題的“快”。
2、高考數(shù)學(xué)答題運(yùn)算要準(zhǔn),膽子要大
高考數(shù)學(xué)沒(méi)有足夠的時(shí)間讓你反復(fù)驗(yàn)算,更不容你一再地變換解題方法,往往是拿到一個(gè)題目,憑感覺(jué)選定一種方法就動(dòng)手做,這時(shí)除了你的每一步運(yùn)算務(wù)求正確外,還要求把你當(dāng)時(shí)的解法堅(jiān)持到底,也許你選擇的不是最好的方法,但如回頭重來(lái)將會(huì)花費(fèi)更多的時(shí)間,當(dāng)然堅(jiān)持到底并不意味著鉆牛角尖,一旦發(fā)現(xiàn)自己走進(jìn)死胡同,還是要立刻迷途知返。
3、高考數(shù)學(xué)答題先易后難,敢于放棄
能夠增強(qiáng)信心,使思維趨向,對(duì)發(fā)揮水平極為有利;另一方面如果先做高考數(shù)學(xué)難題,可能會(huì)浪費(fèi)好多時(shí)間,即使難關(guān)被攻克,卻已沒(méi)有時(shí)間去得那些易得的分?jǐn)?shù),所以關(guān)鍵時(shí)刻,敢于放棄,也是一種明智的選擇。有些解答題第一問(wèn)就很難,這時(shí)可以先放棄第一問(wèn),而直接使用第一問(wèn)的結(jié)論解決第2問(wèn)、第3問(wèn)。
4、高考數(shù)學(xué)答題先熟后生,合理用時(shí)
面對(duì)熟悉的高考數(shù)學(xué)題目,自然象吃了定心丸,做起來(lái)得心應(yīng)手,會(huì)使你獲得好心情,并且可以在最短時(shí)間內(nèi)完成,留下更多的時(shí)間來(lái)思考那些不熟悉的題目。有些題目需花很多時(shí)間卻只得到很少分?jǐn)?shù),有些題目只要花很少時(shí)間卻有很高的分值。所以應(yīng)先把時(shí)間用在那些較易題或分值較高題目上,最大限度地提高時(shí)間的利用率。
高考數(shù)學(xué)解題方法
1、剔除法
利用題目給出的已知條件和選項(xiàng)提供的信息,從四個(gè)選項(xiàng)中挑選出三個(gè)錯(cuò)誤答案,從而達(dá)到正確答案的目的。在答案為定值的時(shí)候,這方法是比較常用的,或者利用數(shù)值范圍,取特殊點(diǎn)代入驗(yàn)證答案。
2、特殊值檢驗(yàn)法
對(duì)于具有一般性的選擇題,在答題過(guò)程中,可以將問(wèn)題具體特殊化,利用問(wèn)題在特殊情況下不真,則利用一般情況下不真這一原理,從而達(dá)到去偽存真的目的。
3、順推破解法
利用數(shù)學(xué)公式、法則、題意、定理和定義,通過(guò)直接演算推理得出答案的方法。
4、極端性原則
將所要解答的問(wèn)題向極端狀態(tài)進(jìn)行分析,使因果關(guān)系變得更加明朗,以達(dá)到迅速解決問(wèn)題的目的。極端性多數(shù)應(yīng)用在取值范圍、解析幾何和求極值上面,很多計(jì)算量大、計(jì)算步驟繁瑣的題,采用極端性去分析,可以瞬間解決問(wèn)題。
5、直接法
直接法就是從題設(shè)條件出發(fā),通過(guò)正確推理、判斷或運(yùn)算,直接得出結(jié)論,從而作出選擇的一種方法。用這種方法的學(xué)生往往數(shù)學(xué)基礎(chǔ)比較扎實(shí)。
6、估算法
就是把復(fù)雜的問(wèn)題轉(zhuǎn)化為簡(jiǎn)單的問(wèn)題,估算出答案的近似值,或者把有關(guān)數(shù)值縮小或擴(kuò)大,從而對(duì)運(yùn)算結(jié)果作出一個(gè)估計(jì)或確定出一個(gè)范圍,達(dá)到作出判斷的效果。