六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高考輔導(dǎo)資料 >

人教版高中數(shù)學(xué)必修一知識點(diǎn)

時(shí)間: 維維20 分享

真正的知識來自內(nèi)心,而不是得自別人的傳授。同時(shí),唯有出自內(nèi)心的知識,才能使人擁有真正的智慧,下面小編給大家分享一些人教版高中數(shù)學(xué)必修一知識點(diǎn),希望能夠幫助大家!

人教版高中數(shù)學(xué)必修一知識點(diǎn)

目錄

高中數(shù)學(xué)必修一知識點(diǎn)

高中數(shù)學(xué)必修一知識點(diǎn)大全

高中數(shù)學(xué)必修一知識點(diǎn)匯總

高中數(shù)學(xué)知識點(diǎn)歸納

高中數(shù)學(xué)必修一知識點(diǎn)梳理

高中數(shù)學(xué)必修一知識點(diǎn)

集合有關(guān)概念

集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東 西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

一般的研究對象統(tǒng)稱為元素,一些元素組成的總體叫集合,簡稱為集。

集合的中元素的三個(gè)特性:

(1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。例:世界上最高的山、中國古代四大美女、教室里面所有的人……

(2)元素的互異性:一個(gè)給定集合中的元素是唯一的,不可重復(fù)的。

例:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

例:{a,b,c}和{a,c,b}是表示同一個(gè)集合

3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1)用大寫字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

1)列舉法:將集合中的元素一一列舉出來 {a,b,c……}

2)描述法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

{x?R| x-3>2} ,{x| x-3>2}

①語言描述法:例:{不是直角三角形的三角形}

②Venn圖:畫出一條封閉的曲線,曲線里面表示集合。

4、集合的分類:

(1)有限集:含有有限個(gè)元素的集合

(2)無限集:含有無限個(gè)元素的集合

(3)空集:不含任何元素的集合  例:{x|x2=-5}

5、元素與集合的關(guān)系:

(1)元素在集合里,則元素屬于集合,即:a?A

(2)元素不在集合里,則元素不屬于集合,即:a A

注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

整數(shù)集Z

有理數(shù)集Q

實(shí)數(shù)集R

返回目錄

高中數(shù)學(xué)必修一知識點(diǎn)大全

函數(shù)的單調(diào)性(局部性質(zhì))及最值

1、增減函數(shù)

(1)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說f(x)在區(qū)間d上是增函數(shù).區(qū)間d稱為y=f(x)的單調(diào)增區(qū)間.< p="">

(2)如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種

2、 圖象的特點(diǎn)

如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

3、函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(A)定義法:

任取x1,x2∈D,且x1<x2;< p="">

作差f(x1)-f(x2);

變形(通常是因式分解和配方);

定號(即判斷差f(x1)-f(x2)的正負(fù));

下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

(B)圖象法(從圖象上看升降)

(C)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

返回目錄

高中數(shù)學(xué)必修一知識點(diǎn)匯總

函數(shù)的有關(guān)概念

函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.

(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

(2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

函數(shù)的三要素:定義域、值域、對應(yīng)法則

函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。

(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

4、函數(shù)圖象知識歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

(2)畫法

A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對稱變換。

(3)函數(shù)圖像變換的特點(diǎn):

1)函數(shù)y=f(x) 關(guān)于X軸對稱y=-f(x)

2)函數(shù)y=f(x) 關(guān)于Y軸對稱y=f(-x)

3)函數(shù)y=f(x) 關(guān)于原點(diǎn)對稱y=-f(-x)

返回目錄

高中數(shù)學(xué)知識點(diǎn)歸納

函數(shù)的解析表達(dá)式,及函數(shù)定義域的求法

1、函數(shù)解析式子的求法

(1)、函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

(2)、求函數(shù)的解析式的主要方法有:

1)代入法:

2)待定系數(shù)法:

3)換元法:

4)拼湊法:

2.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

3、相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

4、區(qū)間的概念:

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

(3)區(qū)間的數(shù)軸表示

返回目錄

高中數(shù)學(xué)必修一知識點(diǎn)梳理

1.值域:先考慮其定義域

(1)觀察法:直接觀察函數(shù)的圖像或函數(shù)的解析式來求函數(shù)的值域;

(2)反表示法:針對分式的類型,把Y關(guān)于X的函數(shù)關(guān)系式化成X關(guān)于Y的函數(shù)關(guān)系式,由X的范圍類似求Y的范圍。

(3)配方法:針對二次函數(shù)的類型,根據(jù)二次函數(shù)圖像的性質(zhì)來確定函數(shù)的值域,注意定義域的范圍。

(4)代換法(換元法):作變量代換,針對根式的題型,轉(zhuǎn)化成二次函數(shù)的類型。

1.分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

(4)常用的分段函數(shù)

1)取整函數(shù):

2)符號函數(shù):

3)含絕對值的函數(shù):

2.映射

一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A

B為從集合A到集合B的一個(gè)映射。記作“f(對應(yīng)關(guān)系):A(原象)

B(象)”

對于映射f:A→B來說,則應(yīng)滿足:

(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);

(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。

注意:映射是針對自然界中的所有事物而言的,而函數(shù)僅僅是針對數(shù)字來說的。所以函數(shù)是映射,而映射不一定的函數(shù)

返回目錄

人教版高中數(shù)學(xué)必修一知識點(diǎn)相關(guān)文章:

高中數(shù)學(xué)必修1知識點(diǎn)總結(jié)

高中數(shù)學(xué)必修一知識點(diǎn)總結(jié)

高中數(shù)學(xué)必修一知識點(diǎn)總結(jié)

高中數(shù)學(xué)必修一復(fù)習(xí)提綱

高中數(shù)學(xué)必修一知識點(diǎn)總結(jié)

高中必修一數(shù)學(xué)知識點(diǎn)歸納

人教版高中數(shù)學(xué)必修一知識點(diǎn)規(guī)納數(shù)學(xué)公式

高一數(shù)學(xué)必修一知識點(diǎn)匯總

高中數(shù)學(xué)高一數(shù)學(xué)必修一知識點(diǎn)

人教版高中數(shù)學(xué)必修一復(fù)習(xí)資料有哪些

973300