六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高三數(shù)學(xué)的知識(shí)點(diǎn)

時(shí)間: 贊銳20 分享

真正的夢(mèng)想,永遠(yuǎn)在實(shí)現(xiàn)之中,更在堅(jiān)持之中。高三的學(xué)習(xí)也是一樣,多在你的堅(jiān)持不懈,加以努力,夢(mèng)想終會(huì)實(shí)現(xiàn)。以下是小編整理的高三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助!

高三數(shù)學(xué)的知識(shí)點(diǎn)

高三數(shù)學(xué)知識(shí)點(diǎn)1

三角函數(shù)。注意歸一公式、誘導(dǎo)公式的正確性

數(shù)列題。1.證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;2.最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;3.證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

立體幾何題1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;2.求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

概率問(wèn)題。1.搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);2.搞清是什么概率模型,套用哪個(gè)公式;3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;4.求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);5.注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;6.注意放回抽樣,不放回抽樣;

高三數(shù)學(xué)知識(shí)點(diǎn)2

一、充分條件和必要條件

當(dāng)命題“若A則B”為真時(shí),A稱為B的充分條件,B稱為A的必要條件。

二、充分條件、必要條件的常用判斷法

1.定義法:判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可

2.轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷。

3.集合法

在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:

若A?B,則p是q的充分條件。

若A?B,則p是q的必要條件。

若A=B,則p是q的充要條件。

若A?B,且B?A,則p是q的既不充分也不必要條件。

三、知識(shí)擴(kuò)展

1.四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實(shí)際問(wèn)題,理解其關(guān)系(尤其是兩種等價(jià)關(guān)系)的產(chǎn)生過(guò)程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:

(1)交換命題的條件和結(jié)論,所得的新命題就是原來(lái)命題的逆命題;

(2)同時(shí)否定命題的條件和結(jié)論,所得的新命題就是原來(lái)的否命題;

(3)交換命題的條件和結(jié)論,并且同時(shí)否定,所得的新命題就是原命題的逆否命題。

2.由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時(shí),可考慮“正難則反”的原則,即在正面判斷較難時(shí),可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進(jìn)行判斷。一個(gè)結(jié)論成立的充分條件可以不止一個(gè),必要條件也可以不止一個(gè)。

高三數(shù)學(xué)知識(shí)點(diǎn)3

1.不等式的定義

在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

2.比較兩個(gè)實(shí)數(shù)的大小

兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質(zhì)

(1)對(duì)稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開(kāi)方:a>b>0?(n∈N,n≥2).

復(fù)習(xí)指導(dǎo)

1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

3.“兩條常用性質(zhì)”

(1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

③a>b>0,0;④0

(2)若a>b>0,m>0,則

①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

②假分?jǐn)?shù)的性質(zhì):>;<(b-m>0).

高三數(shù)學(xué)知識(shí)點(diǎn)相關(guān)文章:

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法

高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

高三數(shù)學(xué)重點(diǎn)知識(shí)總結(jié)大全

高三數(shù)學(xué)重要知識(shí)點(diǎn)整理

高三數(shù)學(xué)知識(shí)點(diǎn)梳理匯總

高考數(shù)學(xué)知識(shí)點(diǎn)歸納整理

高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)最全版

高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)大全

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

1063542