六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

高三數(shù)學理科總復習知識點分析

時間: 贊銳0 分享

高三復習注意到低起點、重探究、求能力的同時,還注重抓住分析問題、解決問題中的信息點、易錯點、得分點,培養(yǎng)良好的審題、解題習慣,養(yǎng)成規(guī)范作答、不容失分的習慣。以下是小編給大家整理的高三數(shù)學理科總復習知識點分析,希望大家能夠喜歡!

高三數(shù)學理科總復習知識點分析1

1.數(shù)列的定義

按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數(shù)列:-1,1,-1,1,….

(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.

(5)次序對于數(shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數(shù)列的分類

(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

(2)按照項與項之間的大小關系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

3.數(shù)列的通項公式

數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4,…,

由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.

再強調(diào)對于數(shù)列通項公式的理解注意以下幾點:

(1)數(shù)列的通項公式實際上是一個以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達式.

(2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.

(3)如所有的函數(shù)關系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數(shù)列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不.

4.數(shù)列的圖象

對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N_(或它的有限子集{1,2,3,…,n})的函數(shù),當自變量從小到大依次取值時,對應的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應函數(shù)和解析式.

數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.

數(shù)列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數(shù)列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構成一個數(shù)列:4,5,6,7,8,9,10.①

數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

高三數(shù)學理科總復習知識點分析2

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數(shù)的大小

兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,

有a-b>0? ;a-b=0? ;a-b<0? .

另外,若b>0,則有>1? ;=1? ;<1? .

概括為:作差法,作商法,中間量法等.

3.不等式的性質(zhì)

(1)對稱性:a>b? ;

(2)傳遞性:a>b,b>c? ;

(3)可加性:a>b?a+c b+c,a>b,c>d?a+c b+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0? ;

(5)可乘方:a>b>0? (n∈N,n≥2);

(6)可開方:a>b>0? (n∈N,n≥2).

復習指導

1.“一個技巧” 作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

2.“ 一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍.

3.“兩條常用性質(zhì)”

(1)倒數(shù)性質(zhì):①a>b,ab>0?<; ②a<0

③a>b>0,0; ④0

(2)若a>b>0,m>0,則

①真分數(shù)的性質(zhì):<; >(b-m>0);

②假分數(shù)的性質(zhì):>; <(b-m>0).

高三數(shù)學理科總復習知識點分析3

導數(shù)

一、綜述

導數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具。在高中階段對于導數(shù)的學習,主要是以下幾個方面:

1.導數(shù)的常規(guī)問題:

(1)刻畫函數(shù)(比初等方法精確細微);(2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關于次多項式的導數(shù)問題屬于較難類型。

2.關于函數(shù)特征,最值問題較多,所以有必要專項討論,導數(shù)法求最值要比初等方法快捷簡便。

3.導數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。

二、知識整合

1.導數(shù)概念的理解。

2.利用導數(shù)判別可導函數(shù)的極值的方法及求一些實際問題的值與最小值。

復合函數(shù)的求導法則是微積分中的重點與難點內(nèi)容。課本中先通過實例,引出復合函數(shù)的求導法則,接下來對法則進行了證明。

3.要能正確求導,必須做到以下兩點:

(1)熟練掌握各基本初等函數(shù)的求導公式以及和、差、積、商的求導法則,復合函數(shù)的求導法則。

(2)對于一個復合函數(shù),一定要理清中間的復合關系,弄清各分解函數(shù)中應對哪個變量求導。

高三數(shù)學理科總復習知識點分析相關文章

數(shù)學高三理科知識點總結

高三數(shù)學必考知識點復習總結

高三數(shù)學知識點梳理匯總

高考數(shù)學知識點歸納整理

高三數(shù)學必考知識點匯總

高三數(shù)學知識點梳理

高三數(shù)學復習知識點資料整理

高考數(shù)學知識點歸納總結

高三數(shù)學重要知識點整理

高三數(shù)學知識點總結,復習注意事項及怎樣學好高三數(shù)學

1071044