六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括

時(shí)間: 贊銳0 分享

良好的學(xué)習(xí)習(xí)慣包括制定學(xué)習(xí)計(jì)劃課前預(yù)習(xí)、專(zhuān)心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。以下是小編給大家整理的高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括,希望能助你一臂之力!

高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括1

1.等差數(shù)列的定義

如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

2.等差數(shù)列的通項(xiàng)公式

若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

3.等差中項(xiàng)

如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

4.等差數(shù)列的常用性質(zhì)

(1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

(2)若{an}為等差數(shù)列,且m+n=p+q,

則am+an=ap+aq(m,n,p,q∈N_).

(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

(5)S2n-1=(2n-1)an.

(6)若n為偶數(shù),則S偶-S奇=nd/2;

若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

注意:

一個(gè)推導(dǎo)

利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

兩個(gè)技巧

已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類(lèi)問(wèn)題,要善于設(shè)元.

(1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱(chēng)設(shè)元.

四種方法

等差數(shù)列的判斷方法

(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

(2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

(4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

注:后兩種方法只能用來(lái)判斷是否為等差數(shù)列,而不能用來(lái)證明等差數(shù)列.

高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括2

定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱(chēng)為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

性質(zhì):

對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對(duì)于x

排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括3

1.滿(mǎn)足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(duì)(x,y),稱(chēng)為二元一次不等式(組)的一個(gè)解,所有這樣的有序數(shù)對(duì)(x,y)構(gòu)成的集合稱(chēng)為二元一次不等式(組)的解集。

2.二元一次不等式(組)的每一個(gè)解(x,y)作為點(diǎn)的坐標(biāo)對(duì)應(yīng)平面上的一個(gè)點(diǎn),二元一次不等式(組)的解集對(duì)應(yīng)平面直角坐標(biāo)系中的一個(gè)半平面(平面區(qū)域)。

3.直線(xiàn)l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個(gè)平面)對(duì)應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對(duì)應(yīng)二元一次不等式Ax+By+C<0(或≤0)。

4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線(xiàn)外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。

5.一個(gè)二元一次不等式表示的平面區(qū)域是相應(yīng)直線(xiàn)劃分開(kāi)的半個(gè)平面,一般用特殊點(diǎn)代入二元一次不等式檢驗(yàn)就可以判定,當(dāng)直線(xiàn)不過(guò)原點(diǎn)時(shí)常選原點(diǎn)檢驗(yàn),當(dāng)直線(xiàn)過(guò)原點(diǎn)時(shí),常選(1,0)或(0,1)代入檢驗(yàn),二元一次不等式組表示的平面區(qū)域是它的各個(gè)不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線(xiàn)還是虛線(xiàn)的含義?!熬€(xiàn)定界,點(diǎn)定域”。

6.滿(mǎn)足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(duì)(x,y),稱(chēng)為這個(gè)二元一次不等式(組)的一個(gè)解。所有整數(shù)解對(duì)應(yīng)的點(diǎn)稱(chēng)為整點(diǎn)(也叫格點(diǎn)),它們都在這個(gè)二元一次不等式(組)表示的平面區(qū)域內(nèi)。

7.畫(huà)二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫(huà)成實(shí)線(xiàn),畫(huà)二元一次不等式Ax+By+C>0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫(huà)成虛線(xiàn)。

8.若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線(xiàn)l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相同;若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線(xiàn)l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相反。

9.從實(shí)際問(wèn)題中抽象出二元一次不等式(組)的步驟是:

(1)根據(jù)題意,設(shè)出變量;

(2)分析問(wèn)題中的變量,并根據(jù)各個(gè)不等關(guān)系列出常量與變量x,y之間的不等式;

(3)把各個(gè)不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。

高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括相關(guān)文章

高三年級(jí)數(shù)學(xué)必背知識(shí)點(diǎn)小結(jié)

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高三數(shù)學(xué)必考知識(shí)點(diǎn)匯總

高三數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)總結(jié)

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高三數(shù)學(xué)知識(shí)點(diǎn)梳理匯總

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

人教版高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全

高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括

良好的學(xué)習(xí)習(xí)慣包括制定學(xué)習(xí)計(jì)劃、課前預(yù)習(xí)、專(zhuān)心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。以下是小編給大家整理的高三數(shù)學(xué)課本必記知識(shí)點(diǎn)概括,希望能助你一臂之力!高三數(shù)學(xué)課本必記知識(shí)
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高三數(shù)學(xué)上冊(cè)課程復(fù)習(xí)知識(shí)點(diǎn)
    高三數(shù)學(xué)上冊(cè)課程復(fù)習(xí)知識(shí)點(diǎn)

    制定計(jì)劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計(jì)劃是推動(dòng)我們主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。計(jì)劃先由老師指導(dǎo)督促,再一定要由自己切實(shí)完成,既有長(zhǎng)遠(yuǎn)打算,

  • 高三數(shù)學(xué)必修第一學(xué)期知識(shí)點(diǎn)概括
    高三數(shù)學(xué)必修第一學(xué)期知識(shí)點(diǎn)概括

    學(xué)習(xí)方法因人而異,我認(rèn)為只要是適合自己的都是好的。在不斷的堅(jiān)持與不懈的努力下,樂(lè)于堅(jiān)守合適的方法,并不停地調(diào)整學(xué)習(xí)方法,再加上踏實(shí)樂(lè)觀(guān)向

  • 高三數(shù)學(xué)學(xué)業(yè)考試知識(shí)點(diǎn)歸納
    高三數(shù)學(xué)學(xué)業(yè)考試知識(shí)點(diǎn)歸納

    機(jī)會(huì)從不會(huì)“失掉”,你失掉了,自有別人會(huì)得到。機(jī)會(huì)只不過(guò)是相對(duì)于充分準(zhǔn)備而又善于創(chuàng)造機(jī)會(huì)的人而言的。沒(méi)有機(jī)會(huì),就要?jiǎng)?chuàng)造機(jī)會(huì);有了機(jī)會(huì),就要

  • 高三數(shù)學(xué)文科必考的知識(shí)點(diǎn)總結(jié)
    高三數(shù)學(xué)文科必考的知識(shí)點(diǎn)總結(jié)

    我們可以以課本為主,重新全面梳理知識(shí)、方法,注意知識(shí)結(jié)構(gòu)的重組與概括,揭示其內(nèi)在的聯(lián)系與規(guī)律,從中提煉出思想方法。以下是小編給大家整理的

1071050