高三數(shù)學(xué)單元必掌握的知識點歸納
高三復(fù)習(xí),各類試題要做幾十套,甚至更多。如果平時做題出錯較多,就只需在試卷上把錯題做上標(biāo)記,在旁邊寫上評析,然后把試卷保存好,每過一段時間,就把“錯題筆記”或標(biāo)記錯題的試卷看一看。以下是小編給大家整理的高三數(shù)學(xué)單元必掌握的知識點歸納,希望大家能夠喜歡!
高三數(shù)學(xué)單元必掌握的知識點歸納1
(1)先看“充分條件和必要條件”
當(dāng)命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
回憶一下初中學(xué)過的“等價于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價于B,記作A<=>B?!俺湟獥l件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題A等價于命題B,那么我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。
(3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”?!皟H當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
高三數(shù)學(xué)單元必掌握的知識點歸納2
基本事件的定義:
一次試驗連同其中可能出現(xiàn)的每一個結(jié)果稱為一個基本事件。
等可能基本事件:
若在一次試驗中,每個基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件。
古典概型:
如果一個隨機試驗滿足:(1)試驗中所有可能出現(xiàn)的基本事件只有有限個;
(2)每個基本事件的發(fā)生都是等可能的;
那么,我們稱這個隨機試驗的概率模型為古典概型.
古典概型的概率:
如果一次試驗的等可能事件有n個,考試技巧,那么,每個等可能基本事件發(fā)生的概率都是;如果某個事件A包含了其中m個等可能基本事件,那么事件A發(fā)生的概率為。
古典概型解題步驟:
(1)閱讀題目,搜集信息;
(2)判斷是否是等可能事件,并用字母表示事件;
(3)求出基本事件總數(shù)n和事件A所包含的結(jié)果數(shù)m;
(4)用公式求出概率并下結(jié)論。
求古典概型的概率的關(guān)鍵:
求古典概型的概率的關(guān)鍵是如何確定基本事件總數(shù)及事件A包含的基本事件的個數(shù)。
高三數(shù)學(xué)單元必掌握的知識點歸納3
向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構(gòu)成右手系。若a、b共線,則a×b=0。
向量的向量積性質(zhì):
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,“向量AB/向量CD”是沒有意義的。
高三數(shù)學(xué)單元必掌握的知識點歸納相關(guān)文章:
★ 高三數(shù)學(xué)必考知識點復(fù)習(xí)總結(jié)