人教版高三數(shù)學知識點
學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那只能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是小編給大家整理的一些高三數(shù)學的知識點,希望對大家有所幫助。
高三數(shù)學重要知識點整理
考點一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯(lián)結詞、“充要關系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理。
考點二:函數(shù)與導數(shù)
函數(shù)是高考的重點內容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應用等,分值約為10分,解答題與導數(shù)交匯在一起考查函數(shù)的性質。導數(shù)部分一方面考查導數(shù)的運算與導數(shù)的幾何意義,另一方面考查導數(shù)的簡單應用,如求函數(shù)的單調區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導數(shù)的綜合應用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。
考點三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結合思想在解題中的應用。向量重點考查平面向量數(shù)量積的概念及應用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結合,解決角度、垂直、共線等問題是“新熱點”題型.
考點四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.
高三數(shù)學必修三復習知識點
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
①解一元一次不等式(組)
②根據具體問題中的數(shù)量關系列不等式(組)并解決簡單實際問題
③用數(shù)軸表示一元一次不等式(組)的解集
高三下冊數(shù)學知識點歸納
(一)導數(shù)第一定義
設函數(shù)y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限值為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),即導數(shù)第一定義
(二)導數(shù)第二定義
設函數(shù)y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限值為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),即導數(shù)第二定義
(三)導函數(shù)與導數(shù)
如果函數(shù)y=f(x)在開區(qū)間I內每一點都可導,就稱函數(shù)f(x)在區(qū)間I內可導。這時函數(shù)y=f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數(shù),這就構成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導函數(shù)簡稱導數(shù)。
(四)單調性及其應用
1.利用導數(shù)研究多項式函數(shù)單調性的一般步驟
(1)求f¢(x)
(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導數(shù)求多項式函數(shù)單調區(qū)間的一般步驟
(1)求f¢(x)
(2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
人教版高三數(shù)學知識點相關文章:
人教版高三數(shù)學知識點
上一篇:高三期末數(shù)學考試知識點
下一篇:高三上冊數(shù)學知識點