高中數(shù)學(xué)知識(shí)點(diǎn)口訣
高中數(shù)學(xué)知識(shí)點(diǎn)多且較為復(fù)雜,我們?cè)趶?fù)習(xí)歸納總結(jié)的時(shí)候總有些知識(shí)點(diǎn)要記混淆,除了上一章分享的高中數(shù)學(xué)學(xué)習(xí)方法及技巧外,用順口溜來(lái)記住高中數(shù)學(xué)知識(shí)點(diǎn)也是一個(gè)好方法。下面是小編為大家整理的關(guān)于高中數(shù)學(xué)知識(shí)點(diǎn)口訣,希望對(duì)您有所幫助!
《三角函數(shù)》
三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。
函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡(jiǎn)證明都需要。
正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;
向下三角平方和,倒數(shù)關(guān)系是對(duì)角,
頂點(diǎn)任意一函數(shù),等于后面兩根除。
誘導(dǎo)公式就是好,負(fù)化正后大化小,
變成稅角好查表,化簡(jiǎn)證明少不了。
二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號(hào)原來(lái)函數(shù)判。
兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。
和差化積須同名,互余角度變名稱。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,
保持基本量不變,繁難向著簡(jiǎn)易變。
逆反原則作指導(dǎo),升冪降次和差積。
條件等式的證明,方程思想指路明。
萬(wàn)能公式不一般,化為有理式居先。
公式順用和逆用,變形運(yùn)用加巧用;
1加余弦想余弦,1減余弦想正弦,
冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,
先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,
簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。
《復(fù)數(shù)》
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。
一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。
箭桿與X軸正向,所成便是輻角度。
箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。
代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。
i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。
虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來(lái)轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。
幾何運(yùn)算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運(yùn)算,
逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。
三角形式的運(yùn)算,須將輻角和模辨。
利用棣莫弗公式,乘方開(kāi)方極方便。
輻角運(yùn)算很奇特,和差是由積商得。
四條性質(zhì)離不得,相等和模與共軛,
兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。
復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
《排列、組合、二項(xiàng)式定理》
加法乘法兩原理,貫穿始終的法則。
與序無(wú)關(guān)是組合,要求有序是排列。
兩個(gè)公式兩性質(zhì),兩種思想和方法。
歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。
排列組合在一起,先選后排是常理。
特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。
排列組合恒等式,定義證明建模試。
關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。
兩條性質(zhì)兩公式,函數(shù)賦值變換式。
《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,
參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。
笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),
兩者—一來(lái)對(duì)應(yīng),開(kāi)創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;
都說(shuō)待定系數(shù)法,實(shí)為方程組思想。
三種類型集大成,畫(huà)出曲線求方程,
給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標(biāo)思想?yún)?shù)好;
平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。
圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。
《不等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。
對(duì)指無(wú)理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。
數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。
求差與0比大小,作商和1爭(zhēng)高下。
直接困難分析好,思路清晰綜合法。
非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。
圖形函數(shù)來(lái)幫助,畫(huà)圖建模構(gòu)造法。
《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。
性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,
若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。
底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,
偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;
其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;
圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;
求解非常有規(guī)律,反解換元定義域;
反函數(shù)的定義域,原來(lái)函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);
函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);
圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
《立體幾何》
點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇怼?/p>
距離都從點(diǎn)出發(fā),角度皆為線線成。
垂直平行是重點(diǎn),證明須弄清概念。
線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。
計(jì)算之前須證明,畫(huà)好移出的圖形。
立體幾何輔助線,常用垂線和平面。
射影概念很重要,對(duì)于解題最關(guān)鍵。
異面直線二面角,體積射影公式活。
公理性質(zhì)三垂線,解決問(wèn)題一大片。
高中數(shù)學(xué)知識(shí)點(diǎn)口訣相關(guān)文章:
★ 高中數(shù)學(xué)3個(gè)解題技巧口訣與數(shù)學(xué)學(xué)習(xí)方法
★ 數(shù)學(xué)知識(shí)點(diǎn)的記憶方法及口訣
★ 高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納
★ 高中高二的數(shù)學(xué)知識(shí)點(diǎn)
★ 各年級(jí)數(shù)學(xué)學(xué)習(xí)方法大全