六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高三學習方法>高三數學>

高三年級數學必背知識點

時間: 燕純0 分享

  如果對某一科目感興趣或者有天賦異稟,那么學習成績會有明顯提高,若是學習動力比較足或是受到了一些積極的影響或刺激,分數也會大幅度上漲。接下來是小編為大家整理的高三年級數學必背知識點,希望大家喜歡!

  高三年級數學必背知識點一

  符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

  【軌跡方程】就是與幾何軌跡對應的代數描述。

  一、求動點的軌跡方程的基本步驟

 ?、苯⑦m當的坐標系,設出動點M的坐標;

 ?、矊懗鳇cM的集合;

 ?、沉谐龇匠?0;

 ?、椿喎匠虨樽詈喰问?

 ?、禉z驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

 ?、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 ?、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

 ?、诚嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  ⒋參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

 ?、到卉壏ǎ簩蓜忧€方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  _譯法:求動點軌跡方程的一般步驟

  ①建系——建立適當的坐標系;

 ?、谠O點——設軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關系式;

 ?、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

 ?、葑C明——證明所求方程即為符合條件的動點軌跡方程。

  高三年級數學必背知識點二

  1.函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(-x);

  (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

  (5)奇函數在對稱的單調區(qū)間內有相同的單調性;偶函數在對稱的單調區(qū)間內有相反的單調性;

  2.復合函數的有關問題

  (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優(yōu)先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3.函數圖像(或方程曲線的對稱性)

  (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

  (6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;

  4.函數的周期性

  (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

  (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

  (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

  (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5.方程k=f(x)有解k∈D(D為f(x)的值域);

  6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7.(1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號由口訣“同正異負”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  8.判斷對應是否為映射時,抓住兩點:

  (1)A中元素必須都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10.對于反函數,應掌握以下一些結論:

  (1)定義域上的單調函數必有反函數;

  (2)奇函數的反函數也是奇函數;

  (3)定義域為非單元素集的偶函數不存在反函數;

  (4)周期函數不存在反函數;

  (5)互為反函數的兩個函數具有相同的單調性;

  (6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11.處理二次函數的問題勿忘數形結合

  二次函數在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;

  12.依據單調性

  利用一次函數在區(qū)間上的保號性可解決求一類參數的范圍問題;

  13.恒成立問題的處理方法

  (1)分離參數法;

  (2)轉化為一元二次方程的根的分布列不等式(組)求解;

  高三年級數學必背知識點三

  1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解.

  2.在應用條件時,易A忽略是空集的情況

  3.你會用補集的思想解決有關問題嗎?

  4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

  5.你知道“否命題”與“命題的否定形式”的區(qū)別.

  6.求解與函數有關的問題易忽略定義域優(yōu)先的原則.

  7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱.

  8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.

  9.原函數在區(qū)間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調

  10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法

  11.求函數單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示.

  12.求函數的值域必須先求函數的定義域。

  13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?

  14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

  (真數大于零,底數大于零且不等于1)字母底數還需討論

  15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

  16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。

  17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

  18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.

  19.絕對值不等式的解法及其幾何意義是什么?

  20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

  21.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

  22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示.

  23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.

  24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

  25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

  26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?

  27.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續(xù)的。)

  28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

  29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

  30.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?

  31.在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?

  32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

  33.反正弦、反余弦、反正切函數的取值范圍分別是

  34.你還記得某些特殊角的三角函數值嗎?

  35.掌握正弦函數、余弦函數及正切函數的圖象和性質.你會寫三角函數的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規(guī)范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

  36.函數的圖象的平移,方程的平移以及點的平移公式易混:

  (1)函數的圖象的平移為“左+右-,上+下-”;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

  (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

  (3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k.

  37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)

  38.形如的周期都是,但的周期為。

  39.正弦定理時易忘比值還等于2R。

  高三年級數學必背知識點四

  1.課程內容:

  必修課程由5個模塊組成:

  必修1:集合、函數概念與基本初等函數(指、對、冪函數)

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統(tǒng)計、概率。

  必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

  必修5:解三角形、數列、不等式。

  以上是每一個高中學生所必須學習的。

  上述內容覆蓋了高中階段傳統(tǒng)的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發(fā)生、發(fā)展過程和實際應用,而不在技巧與難度上做過高的要求。

  此外,基礎內容還增加了向量、算法、概率、統(tǒng)計等內容。

  2.重難點及考點:

  重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

  難點:函數、圓錐曲線

  高考相關考點:

 ?、偶吓c簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

 ?、坪瘮担河成渑c函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用

 ?、菙盗校簲盗械挠嘘P概念、等差數列、等比數列、數列求和、數列的應用

  ⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用

 ?、善矫嫦蛄浚河嘘P概念與初等運算、坐標運算、數量積及其應用

  ⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

 ?、酥本€和圓的方程:直線的方程、兩直線的位置關系、線性規(guī)劃、圓、直線與圓的位置關系

 ?、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

 ?、椭本€、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

 ?、闻帕?、組合和概率:排列、組合應用題、二項式定理及其應用

 ?、细怕逝c統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

 ?、袑担簩档母拍睢⑶髮?、導數的應用

  ⒀復數:復數的概念與運算

高三年級數學必背知識點相關文章

1.高三數學必背的復習公式與提升復習效率的方法

2.2020屆高三數學復習必備知識點

3.高三數學必背公式總結

4.高三數學考前重點知識點

5.高三數學各階段復習要點總結及高分技巧分享

6.2017年高三數學復習重點總結

7.高三數學重要考點總結

8.高三數學知識點總結及數學學習方法

9.2016高三數學知識點

10.高三數學知識點

高三年級數學必背知識點

如果對某一科目感興趣或者有天賦異稟,那么學習成績會有明顯提高,若是學習動力比較足或是受到了一些積極的影響或刺激,分數也會大幅度上漲。接下來是小編為大家整理的高三年?
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高三數學知識點考點總結大全
    高三數學知識點考點總結大全

      奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學習中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價攻克它。為了學習,廢寢

  • 高三數學知識點梳理匯總
    高三數學知識點梳理匯總

      與高一高二不同之處在于,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需

  • 高三數學重要知識點總結
    高三數學重要知識點總結

      高三會教給我們奮斗,每個人都有無盡的潛力,每一個人都有無窮的提升空間,不經過一年血戰(zhàn),也許我們永遠發(fā)現(xiàn)不了自己身上蘊藏的能量。所以高

  • 高三年級數學知識點復習
    高三年級數學知識點復習

      高中學習方法其實很簡單,但是這個方法要一直保持下去,才能在最終考試時看到成效,如果對某一科目感興趣或者有天賦異稟,那么學習成績會有明

420018