高考數(shù)學(xué)知識點大全
對于文科生來說,數(shù)學(xué)是一門比較特別的學(xué)科,高考要想數(shù)學(xué)分高,就必須掌握一些數(shù)學(xué)知識點。接下來是小編為大家整理的高考數(shù)學(xué)知識點,歡迎大家閱讀學(xué)習(xí)!
高考數(shù)學(xué)知識點大全1
01.遺忘空集致誤
由于空集是任何非空集合的真子集,因此B=?時也滿足B?A.解含有參數(shù)的集合問題時,要特別注意當參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況。
02.忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。
03.混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。
04.充分條件、必要條件顛倒致誤
對于兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件.解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充分條件和必要條件的概念作出準確的判斷。
05.“或”“且”“非”理解不準致誤
命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假).求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應(yīng)起來進行理解,通過集合的運算求解。
06.函數(shù)的單調(diào)區(qū)間理解不準致誤
在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法.對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
07.判斷函數(shù)奇偶性忽略定義域致誤
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。
08.函數(shù)零點定理使用不當致誤
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點.函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。
09.導(dǎo)數(shù)的幾何意義不明致誤
函數(shù)在一點處的導(dǎo)數(shù)值是函數(shù)圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數(shù)圖像外的一點向函數(shù)圖像上引切線的問題,解決這類問題的基本思想是設(shè)出切點坐標,根據(jù)導(dǎo)數(shù)的幾何意義寫出切線方程.然后根據(jù)題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點處的切線”,還是“過某點的切線”。
10.導(dǎo)數(shù)與極值關(guān)系不清致誤
f′(x0)=0只是可導(dǎo)函數(shù)f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f′(x)在x0兩側(cè)異號.另外,已知極值點求參數(shù)時要進行檢驗。
11.三角函數(shù)的單調(diào)性判斷致誤
對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sin x的單調(diào)性相反,就不能再按照函數(shù)y=sin x的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決.對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進行判斷。
12.圖像變換方向把握不準致誤
函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的圖像可看作由下面的方法得到:(1)把正弦曲線上的所有點向左(當φ>0時)或向右(當φ<0時)平行移動|φ|個單位長度;(2)再把所得各點橫坐標縮短(當ω>1時)或伸長(當0<ω<1時)到原來的1ω倍(縱坐標不變);(3)再把所得各點的縱坐標伸長(當A>1時)或縮短(當0<a<1時)到原來的a倍(橫坐標不變).即先作相位變換,再作周期變換,最后作振幅變換.若先作周期變換,再作相位變換,應(yīng)左(右)平移|Φ|Ω個單位.另外注意根據(jù)Φ的符號判定平移的方向。< p="">
13.忽視零向量致誤
零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線.它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視.
14.向量夾角范圍不清致誤
解題時要全面考慮問題.數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。
15.忽視斜率不存在致誤
在解決兩直線平行的相關(guān)問題時,若利用l1∥l2?k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會導(dǎo)致錯解.這類問題也可以利用如下的結(jié)論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數(shù)值后代入檢驗,看看兩條直線是不是重合從而確定問題的答案.對于解決兩直線垂直的相關(guān)問題時也有類似的情況.利用l1⊥l2?k1·k2=-1時,要注意其前提條件是k1與k2必須同時存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論。
16.忽視零截距致誤
解決有關(guān)直線的截距問題時應(yīng)注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式.因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況。
17.忽視圓錐曲線定義中條件致誤
利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|.如果不滿足第一個條件,動點到兩定點的距離之差為常數(shù),而不是差的絕對值為常數(shù),那么其軌跡只能是雙曲線的一支。
18.誤判直線與圓錐曲線位置關(guān)系
過定點的直線與雙曲線的位置關(guān)系問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項系數(shù)不為零,當二次項系數(shù)為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個交點;二是利用數(shù)形結(jié)合的思想,畫出圖形,根據(jù)圖形判斷直線和雙曲線各種位置關(guān)系.在直線與圓錐曲線的位置關(guān)系中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性。
19.兩個計數(shù)原理不清致誤
分步加法計數(shù)原理與分類乘法計數(shù)原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數(shù)對象的本質(zhì)特征與形成過程,按照事件的結(jié)果來分類,按照事件的發(fā)生過程來分步,然后應(yīng)用兩個基本原理解決.對于較復(fù)雜的問題既要用到分類加法計數(shù)原理,又要用到分步乘法計數(shù)原理,一般是先分類,每一類中再分步,注意分類、分步時要不重復(fù)、不遺漏,對于“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。
20.排列、組合不分致誤
為了簡化問題和表達方便,解題時應(yīng)將具有實際意義的排列組合問題符號化、數(shù)學(xué)化,建立適當?shù)哪P?,再?yīng)用相關(guān)知識解決.建立模型的關(guān)鍵是判斷所求問題是排列問題還是組合問題,其依據(jù)主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。
21.混淆項系數(shù)與二項式系數(shù)致誤
在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,…,n項的二項式系數(shù)分別是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而項的系數(shù)是二項式系數(shù)與其他數(shù)字因數(shù)的積。
22.循環(huán)結(jié)束判斷不準致誤
控制循環(huán)結(jié)構(gòu)的是計數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結(jié)束的條件.在解答這類題目時首先要弄清楚這兩個變量的變化規(guī)律,其次要看清楚循環(huán)結(jié)束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結(jié)束還是不滿足條件時結(jié)束。
23.條件結(jié)構(gòu)對條件判斷不準致誤
條件結(jié)構(gòu)的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重復(fù),在解題時對判斷條件要仔細辨別,看清楚條件和函數(shù)的對應(yīng)關(guān)系,對條件中的數(shù)值不要漏掉也不要重復(fù)了端點值。
24.復(fù)數(shù)的概念不清致誤
對于復(fù)數(shù)a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,復(fù)數(shù)a+bi(a,b∈R)是實數(shù)a;當b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù).解決復(fù)數(shù)概念類試題要仔細區(qū)分以上概念差別,防止出錯.另外,i2=-1是實現(xiàn)實數(shù)與虛數(shù)互化的橋梁,要適時進行轉(zhuǎn)化,解題時極易丟掉“-”而出錯。
高考數(shù)學(xué)知識點大全2
數(shù)列的概念與簡單表示法
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數(shù)列的分類
(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
(2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.
3.數(shù)列的通項公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是唯一的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非唯一.如:數(shù)列1,2,3,4,…,
由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.
再強調(diào)對于數(shù)列通項公式的理解注意以下幾點:
(1)數(shù)列的通項公式實際上是一個以正整數(shù)集N_它的有限子集{1,2,…,n}為定義域的函數(shù)的表達式.
(2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.
(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.000 1,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.414 2,…就沒有通項公式.
(4)有的數(shù)列的通項公式,形式上不一定是唯一的,正如舉例中的:
(5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不唯一.
4.數(shù)列的圖象
對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應(yīng)關(guān)系:
序號:1 2 3 4 5 6 7
項: 4 5 6 7 8 9 10
這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N_或它的有限子集{1,2,3,…,n})的函數(shù),當自變量從小到大依次取值時,對應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).
由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應(yīng)函數(shù)和解析式.
數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.
數(shù)列用圖象來表示,可以以序號為橫坐標,相應(yīng)的項為縱坐標,描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.
把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.
5.遞推數(shù)列
一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個數(shù)列:4,5,6,7,8,9,10.①
數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。
同步練習(xí)題
1.已知數(shù)列{an}中,an=n2+n,則a3等于( )
A.3 B.9
C.12 D.20
答案:C
2.下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是( )
A.1,12,13,14,…
B.-1,-2,-3,-4,…
C.-1,-12,-14,-18,…
D.1,2,3,…,n
解析:選C.對于A,an=1n,n∈N_它是無窮遞減數(shù)列;對于B,an=-n,n∈N_它也是無窮遞減數(shù)列;D是有窮數(shù)列;對于C,an=-(12)n-1,它是無窮遞增數(shù)列.
3.下列說法不正確的是( )
A.根據(jù)通項公式可以求出數(shù)列的任何一項
B.任何數(shù)列都有通項公式
C.一個數(shù)列可能有幾個不同形式的通項公式
D.有些數(shù)列可能不存在最大項
解析:選B.不是所有的數(shù)列都有通項公式,如0,1,2,1,0,….
4.數(shù)列23,45,67,89,…的第10項是( )
A.1617 B.1819
C.2021 D.2223
解析:選C.由題意知數(shù)列的通項公式是an=2n2n+1,
∴a10=2×102×10+1=2021.故選C.
5.已知非零數(shù)列{an}的遞推公式為an=nn-1?;an-1(n>1),則a4=( )
A.3a1 B.2a1
C.4a1 D.1
解析:選C.依次對遞推公式中的n賦值,當n=2時,a2=2a1;當n=3時,a3=32a2=3a1;當n=4時,a4=43a3=4a1.
高考數(shù)學(xué)知識點大全3
1、混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。
2、忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。
3、判斷函數(shù)奇偶性忽略定義域致誤
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。
4、函數(shù)零點定理使用不當致誤
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。
5、函數(shù)的單調(diào)區(qū)間理解不準致誤
在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
6、三角函數(shù)的單調(diào)性判斷致誤
對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進行判斷。
7、向量夾角范圍不清致誤
解題時要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。
8、忽視零向量致誤
零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視。
9、對數(shù)列的定義、性質(zhì)理解錯誤
等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N_是等差數(shù)列。
10、an與Sn關(guān)系不清致誤
在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。
11、錯位相減求和項處理不當致誤
錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項的乘積所組成的,求其前n項和?;痉椒ㄊ窃O(shè)這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉(zhuǎn)化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。
12、不等式性質(zhì)應(yīng)用不當致誤
在使用不等式的基本性質(zhì)進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤。
13、數(shù)列中的最值錯誤
數(shù)列問題中其通項公式、前n項和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關(guān)系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠近而定。
14、不等式恒成立問題致誤
解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。
15、忽視三視圖中的實、虛線致誤
三視圖是根據(jù)正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。
16、面積體積計算轉(zhuǎn)化不靈活致誤
面積、體積的計算既需要學(xué)生有扎實的基礎(chǔ)知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時常用的思想方法。(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進行分析求解。
17、忽視基本不等式應(yīng)用條件致誤
利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務(wù)必注意a,b為正數(shù)(或a,b非負),ab或a+b其中之一應(yīng)是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到。
高考數(shù)學(xué)知識點大全相關(guān)文章:
3.高三數(shù)學(xué)知識點考點總結(jié)大全
4.高考數(shù)學(xué)知識點有多少 高考數(shù)學(xué)知識點總結(jié)精華版