2020年高考數(shù)學答題模板
答題模板能幫助考生更規(guī)范的解答題目,讓閱卷老師更快的找到給分點的同時可以提升印象分哦!以下是小編搜索整理的關于2020年高考數(shù)學答題模板,供參考復習,希望對大家有所幫助!
1.選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
2.填空題四大速解方法:
直接法、特殊化法、數(shù)形結合法、等價轉化法。
解答題答題模板
1.三角變換與三角函數(shù)的性質問題
(1)解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
(2)構建答題模板
①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sinx,y=cosx的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質,寫出結果。
④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規(guī)范性。
2.解三角形問題
(1)解題路線圖
①a化簡變形;b用余弦定理轉化為邊的關系;c變形證明。
②a用余弦定理表示角;b用基本不等式求范圍;c確定角的取值范圍。
(2)構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
3.數(shù)列的通項、求和問題
(1)解題路線圖
①先求某一項,或者找到數(shù)列的關系式。
②求通項公式。
③求數(shù)列和通式。
(2)構建答題模板
①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關系,即找數(shù)列的遞推公式。
②求通項:根據(jù)數(shù)列遞推公式轉化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據(jù)數(shù)列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規(guī)范。
4.利用空間向量求角問題
(1)解題路線圖
①建立坐標系,并用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
(2)構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
5.圓錐曲線中的范圍問題
(1)解題路線圖
①設方程。
②解系數(shù)。
③得結論。
(2)構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數(shù):用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數(shù)的范圍。
④再回顧:注意目標變量的范圍所受題中其他因素的制約。
6.解析幾何中的探索性問題
(1)解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
(2)構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果,經(jīng)驗證成立則肯。定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規(guī)范性。
7.離散型隨機變量的均值與方差
(1)解題路線圖
①a標記事件;b對事件分解;c計算概率。
②a確定ξ取值;b計算概率;c得分布列;d求數(shù)學期望。
(2)構建答題模板
①定元:根據(jù)已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
8.函數(shù)的單調性、極值、最值問題
(1)解題路線圖
①a先對函數(shù)求導;b計算出某一點的斜率;c得出切線方程。
②a先對函數(shù)求導;b談論導數(shù)的正負性;c列表觀察原函數(shù)值;d得到原函數(shù)的單調區(qū)間和極值。
(2)構建答題模板
①求導數(shù):求f(x)的導數(shù)f′(x)。(注意f(x)的定義域)
2020年高考數(shù)學答題模板相關文章: