六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

數(shù)學高三理科知識點總結

時間: 文瓊0 分享

  無論是文科數(shù)學還是理科數(shù)學,都是難倒高考生的一門學科。下面是關于數(shù)學高三理科知識點的內(nèi)容,歡迎閱讀!

  符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

  【軌跡方程】就是與幾何軌跡對應的代數(shù)描述。

  一、求動點的軌跡方程的基本步驟

 ?、苯⑦m當?shù)淖鴺讼?,設出動點M的坐標;

 ?、矊懗鳇cM的集合;

 ?、沉谐龇匠?0;

 ?、椿喎匠虨樽詈喰问?

  ⒌檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

 ?、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 ?、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

 ?、诚嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

 ?、磪?shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

 ?、到卉壏ǎ簩蓜忧€方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  直譯法:求動點軌跡方程的一般步驟

  ①建系——建立適當?shù)淖鴺讼?

 ?、谠O點——設軌跡上的任一點P(x,y);

 ?、哿惺健谐鰟狱cp所滿足的關系式;

 ?、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

  高考數(shù)學知識點精華

  高考數(shù)學知識點總結精華一

  一、高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導數(shù),因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。

  二、平面向量和三角函數(shù)

  對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。

  高考數(shù)學知識點總結精華二

  三、數(shù)列

  數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  四、空間向量和立體幾何

  在里面重點考察兩個方面:一個是證明;一個是計算。

  五、概率和統(tǒng)計

  概率和統(tǒng)計主要屬于數(shù)學應用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復事件發(fā)生的概率。

  高考數(shù)學知識點總結精華三

  六、解析幾何

  這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。

  七、壓軸題

  同學們在最后的備考復習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  高考數(shù)學直線方程知識點:什么是直線方程

  從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與 X 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

數(shù)學高三理科知識點總結相關文章

1.高三數(shù)學知識點總結及數(shù)學學習方法

2.高三數(shù)學知識點考點總結大全

3.高三數(shù)學重要知識點總結

4.高三年級數(shù)學知識點整理總結

5.高考數(shù)學知識點總結

6.高考數(shù)學知識點總結歸納

7.高考數(shù)學知識點有多少 高考數(shù)學知識點總結精華版

8.高三數(shù)學必考知識點匯總

9.高考數(shù)學理科知識點

10.高考數(shù)學知識點歸納整理

430221