六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦

時(shí)間: 燕純20 分享

  有很多的同學(xué)是非常想知道,高考數(shù)學(xué)必備知識(shí)點(diǎn)及公式有哪些?接下來(lái)是小編為大家整理的高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦,希望大家喜歡!

  高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦一

  高考數(shù)學(xué)??茧y點(diǎn):必修二

  第一章:空間幾何

  三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實(shí)物從而計(jì)算就需要比較強(qiáng)的空間感,要能從三張平面圖中慢慢在腦海中畫(huà)出實(shí)物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書(shū)上的例圖,把實(shí)物圖和平面圖結(jié)合起來(lái)看,先熟練地正推,再慢慢的逆推(建議用紙做一個(gè)立方體來(lái)找感覺(jué))。

  在做題時(shí)結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺(tái)體的表面積和體積,把公式記牢問(wèn)題就不大。

  第二章:點(diǎn)、直線、平面之間的位置關(guān)系

  這一章除了面與面的相交外,對(duì)空間概念的要求不強(qiáng),大部分都可以直接畫(huà)圖,這就要求學(xué)生多看圖。自己畫(huà)草圖的時(shí)候要嚴(yán)格注意好實(shí)線虛線,這是個(gè)規(guī)范性問(wèn)題。

  關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語(yǔ)言、文字語(yǔ)言、數(shù)學(xué)表達(dá)式表示出來(lái)。只要這些全部過(guò)關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,大多同學(xué)即使知道有這個(gè)概念,也無(wú)法理解怎么在二面里面做出這個(gè)角。對(duì)這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒(méi)有什么捷徑可走。

  第三章:直線與方程

  這一章主要講斜率與直線的位置關(guān)系,只要搞清楚直線平行、垂直的斜率表示問(wèn)題就錯(cuò)不了。需要注意的是當(dāng)直線垂直時(shí)斜率不存在的情況是考試中的??键c(diǎn)。另外直線方程的幾種形式所涉及到的一般公式,會(huì)用就行,要求不高。點(diǎn)與點(diǎn)的距離、點(diǎn)與直線的距離、直線與直線的距離,只要直接套用公式就行,沒(méi)什么難點(diǎn)。

  第四章:圓與方程

  能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號(hào),另一邊不含,這時(shí)就要注意開(kāi)方后定義域或值域的限制。通過(guò)點(diǎn)到點(diǎn)的距離、點(diǎn)到直線的距離、圓半徑的大小關(guān)系來(lái)判斷點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對(duì)稱(chēng)性引起的相切、相交等的多種情況,自己把幾種對(duì)稱(chēng)的形式羅列出來(lái),多思考就不難理解了。

  高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦二

  高考數(shù)學(xué)易錯(cuò)知識(shí)點(diǎn):函數(shù)與導(dǎo)數(shù)

  1.易錯(cuò)點(diǎn)求函數(shù)定義域忽視細(xì)節(jié)致誤

  錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):

  (1)分母不為0;

  (2)偶次被開(kāi)放式非負(fù);

  (3)真數(shù)大于0;

  (4)0的0次冪沒(méi)有意義。

  函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。

  2.易錯(cuò)點(diǎn)帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤

  錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:

  一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;

  二是畫(huà)出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問(wèn)題離不開(kāi)函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問(wèn)題,尋找解決問(wèn)題的方案。

  對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  3.易錯(cuò)點(diǎn)求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤

  錯(cuò)因分析:求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱(chēng),如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。

  在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱(chēng)的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。

  4.易錯(cuò)點(diǎn)抽象函數(shù)中推理不嚴(yán)密致誤

  錯(cuò)因分析:很多抽象函數(shù)問(wèn)題都是以抽象出某一類(lèi)函數(shù)的共同“特征”而設(shè)計(jì)出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類(lèi)比這類(lèi)函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。

  解答抽象函數(shù)問(wèn)題要注意特殊賦值法的應(yīng)用,通過(guò)特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。

  抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫(xiě)規(guī)范。

  5.易錯(cuò)點(diǎn)函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱(chēng)之為函數(shù)的零點(diǎn)定理。

  函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。

  6.易錯(cuò)點(diǎn)混淆兩類(lèi)切線致誤

  錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類(lèi)型的切線。

  7.易錯(cuò)點(diǎn)混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

  錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。

  研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  8.易錯(cuò)點(diǎn)導(dǎo)數(shù)與極值關(guān)系不清致誤

  錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。

  出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清??蓪?dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。

  高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦三

  高中數(shù)學(xué)有哪些必備知識(shí)點(diǎn)

  1.對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。

  中元素各表示什么?

  注重借助于數(shù)軸和文氏圖解集合問(wèn)題。

  空集是一切集合的子集,是一切非空集合的真子集。

  3.注意下列性質(zhì):

  (3)德摩根定律:

  4.你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法)

  的取值范圍。

  6.命題的四種形式及其相互關(guān)系是什么?

  (互為逆否關(guān)系的命題是等價(jià)命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  7.對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

  (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

  8.函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

  (定義域、對(duì)應(yīng)法則、值域)

  9.求函數(shù)的定義域有哪些常見(jiàn)類(lèi)型?

  10.如何求復(fù)合函數(shù)的定義域?

  義域是_____________。

  11.求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

  12.反函數(shù)存在的條件是什么?

  (一一對(duì)應(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  13.反函數(shù)的性質(zhì)有哪些?

 ?、倩榉春瘮?shù)的圖象關(guān)于直線y=x對(duì)稱(chēng);

 ?、诒4媪嗽瓉?lái)函數(shù)的單調(diào)性、奇函數(shù)性;

  14.如何用定義證明函數(shù)的單調(diào)性?

  (取值、作差、判正負(fù))

  如何判斷復(fù)合函數(shù)的單調(diào)性?

  ∴……)

  15.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

  值是()

  A.0B.1C.2D.3

  ∴a的最大值為3)

  16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

  (f(x)定義域關(guān)于原點(diǎn)對(duì)稱(chēng))

  注意如下結(jié)論:

  (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

  17.你熟悉周期函數(shù)的定義嗎?

  函數(shù),T是一個(gè)周期。)

  如:

  18.你掌握常用的圖象變換了嗎?

  注意如下“翻折”變換:

  19.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

  的雙曲線。

  應(yīng)用:①“三個(gè)二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程

  ②求閉區(qū)間[m,n]上的最值。

 ?、矍髤^(qū)間定(動(dòng)),對(duì)稱(chēng)軸動(dòng)(定)的最值問(wèn)題。

  ④一元二次方程根的分布問(wèn)題。

  由圖象記性質(zhì)!(注意底數(shù)的限定!)

  利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

  20.你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?

  21.如何解抽象函數(shù)問(wèn)題?

  (賦值法、結(jié)構(gòu)變換法)

  22.掌握求函數(shù)值域的常用方法了嗎?

  (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

  如求下列函數(shù)的最值:

  23.你記得弧度的定義嗎?能寫(xiě)出圓心角為α,半徑為R的弧長(zhǎng)公式和扇形面積公式嗎?

  24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

  25.你能迅速畫(huà)出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫(xiě)出單調(diào)區(qū)間、對(duì)稱(chēng)點(diǎn)、對(duì)稱(chēng)軸嗎?

  (x,y)作圖象。

  27.在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面——先求出某一個(gè)三角函數(shù)值,再判定角的范圍。

  28.在解含有正、余弦函數(shù)的問(wèn)題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎?

  29.熟練掌握三角函數(shù)圖象變換了嗎?

  (平移變換、伸縮變換)

  平移公式:

  圖象?

  30.熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?

  “奇”、“偶”指k取奇、偶數(shù)。

  A.正值或負(fù)值B.負(fù)值C.非負(fù)值D.正值

  31.熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

  理解公式之間的聯(lián)系:

  應(yīng)用以上公式對(duì)三角函數(shù)式化簡(jiǎn)。(化簡(jiǎn)要求:項(xiàng)數(shù)最少、函數(shù)種類(lèi)最少,分母中不含三角函數(shù),能求值,盡可能求值。)

  具體方法:

  (2)名的變換:化弦或化切

  (3)次數(shù)的變換:升、降冪公式

  (4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。

  32.正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

  (應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

  33.用反三角函數(shù)表示角時(shí)要注意角的范圍。

  34.不等式的性質(zhì)有哪些?

  答案:C

  35.利用均值不等式:

  值?(一正、二定、三相等)

  注意如下結(jié)論:

  36.不等式證明的基本方法都掌握了嗎?

  (比較法、分析法、綜合法、數(shù)學(xué)歸納法等)

  并注意簡(jiǎn)單放縮法的應(yīng)用。

  (移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

  38.用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開(kāi)始

  39.解含有參數(shù)的不等式要注意對(duì)字母參數(shù)的討論

  40.對(duì)含有兩個(gè)絕對(duì)值的不等式如何去解?

  (找零點(diǎn),分段討論,去掉絕對(duì)值符號(hào),最后取各段的并集。)

  證明:

  (按不等號(hào)方向放縮)

  42.不等式恒成立問(wèn)題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問(wèn)題,或“△”問(wèn)題)

  43.等差數(shù)列的定義與性質(zhì)

  0的二次函數(shù))

  項(xiàng),即:

  44.等比數(shù)列的定義與性質(zhì)

  46.你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?

  例如:(1)求差(商)法

  解:

  [練習(xí)]

  (2)疊乘法

  解:

  (3)等差型遞推公式

  [練習(xí)]

  (4)等比型遞推公式

  [練習(xí)]

  (5)倒數(shù)法

  47.你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?

  例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對(duì)互為相反數(shù)的項(xiàng)。

  解:

  [練習(xí)]

  (2)錯(cuò)位相減法:

  (3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫(xiě),再與原來(lái)順序的數(shù)列相加。

  [練習(xí)]

  48.你知道儲(chǔ)蓄、貸款問(wèn)題嗎?

  △零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型:

  若每期存入本金p元,每期利率為r,n期后,本利和為:

  △若按復(fù)利,如貸款問(wèn)題——按揭貸款的每期還款計(jì)算模型(按揭貸款——分期等額歸還本息的借款種類(lèi))

  若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足

  p——貸款數(shù),r——利率,n——還款期數(shù)

  49.解排列、組合問(wèn)題的依據(jù)是:分類(lèi)相加,分步相乘,有序排列,無(wú)序組合。

  (2)排列:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素,按照一定的順序排成一

  (3)組合:從n個(gè)不同元素中任取m(m≤n)個(gè)元素并組成一組,叫做從n個(gè)不

  50.解排列與組合問(wèn)題的規(guī)律是:

  相鄰問(wèn)題捆綁法;相間隔問(wèn)題插空法;定位問(wèn)題優(yōu)先法;多元問(wèn)題分類(lèi)法;至多至少問(wèn)題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。

  如:學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績(jī)

  則這四位同學(xué)考試成績(jī)的所有可能情況是()

  A.24B.15C.12D.10

  解析:可分成兩類(lèi):

  (2)中間兩個(gè)分?jǐn)?shù)相等

  相同兩數(shù)分別取90,91,92,對(duì)應(yīng)的排列可以數(shù)出來(lái),分別有3,4,3種,∴有10種。

  ∴共有5+10=15(種)情況

  51.二項(xiàng)式定理

  性質(zhì):

  (3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大且為第

  表示)

  52.你對(duì)隨機(jī)事件之間的關(guān)系熟悉嗎?

  的和(并)。

  (5)互斥事件(互不相容事件):“A與B不能同時(shí)發(fā)生”叫做A、B互斥。

  (6)對(duì)立事件(互逆事件):

  (7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。

  53.對(duì)某一事件概率的求法:

  分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

  (5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生

  如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

  (1)從中任取2件都是次品;

  (2)從中任取5件恰有2件次品;

  (3)從中有放回地任取3件至少有2件次品;

  解析:有放回地抽取3次(每次抽1件),∴n=103

  而至少有2件次品為“恰有2次品”和“三件都是次品”

  (4)從中依次取5件恰有2件次品。

  解析:∵一件一件抽取(有順序)

  分清(1)、(2)是組合問(wèn)題,(3)是可重復(fù)排列問(wèn)題,(4)是無(wú)重復(fù)排列問(wèn)題。

  54.抽樣方法主要有:簡(jiǎn)單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

  55.對(duì)總體分布的估計(jì)——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

  要熟悉樣本頻率直方圖的作法:

  (2)決定組距和組數(shù);

  (3)決定分點(diǎn);

  (4)列頻率分布表;

  (5)畫(huà)頻率直方圖。

  如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為_(kāi)___________。

  56.你對(duì)向量的有關(guān)概念清楚嗎?

  (1)向量——既有大小又有方向的量。

  在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

  (6)并線向量(平行向量)——方向相同或相反的向量。

  規(guī)定零向量與任意向量平行。

  (7)向量的加、減法如圖:

  (8)平面向量基本定理(向量的分解定理)

  的一組基底。

  (9)向量的坐標(biāo)表示

  表示。

  57.平面向量的數(shù)量積

  數(shù)量積的幾何意義:

  (2)數(shù)量積的運(yùn)算法則

  [練習(xí)]

  答案:

  答案:2

  答案:

  58.線段的定比分點(diǎn)

  ※.你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

  59.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

  平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

  線面平行的判定:

  線面平行的性質(zhì):

  三垂線定理(及逆定理):

  線面垂直:

  面面垂直:

  60.三類(lèi)角的定義及求法

  (1)異面直線所成的角θ,0°<θ≤90°

  (2)直線與平面所成的角θ,0°≤θ≤90°

  (三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

  三類(lèi)角的求法:

 ?、僬页龌蜃鞒鲇嘘P(guān)的角。

 ?、谧C明其符合定義,并指出所求作的角。

 ?、塾?jì)算大小(解直角三角形,或用余弦定理)。

  [練習(xí)]

  (1)如圖,OA為α的斜線OB為其在α內(nèi)射影,OC為α內(nèi)過(guò)O點(diǎn)任一直線。

  (2)如圖,正四棱柱ABCD—A1B1C1D1中對(duì)角線BD1=8,BD1與側(cè)面B1BCC1所成的為30°。

  ①求BD1和底面ABCD所成的角;

 ?、谇螽惷嬷本€BD1和AD所成的角;

 ?、矍蠖娼荂1—BD1—B1的大小。

  (3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

  (∵AB∥DC,P為面PAB與面PCD的公共點(diǎn),作PF∥AB,則PF為面PCD與面PAB的交線……)

  61.空間有幾種距離?如何求距離?

  點(diǎn)與點(diǎn),點(diǎn)與線,點(diǎn)與面,線與線,線與面,面與面間距離。

  將空間距離轉(zhuǎn)化為兩點(diǎn)的距離,構(gòu)造三角形,解三角形求線段的長(zhǎng)(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。

  如:正方形ABCD—A1B1C1D1中,棱長(zhǎng)為a,則:

  (1)點(diǎn)C到面AB1C1的距離為_(kāi)__________;

  (2)點(diǎn)B到面ACB1的距離為_(kāi)___________;

  (3)直線A1D1到面AB1C1的距離為_(kāi)___________;

  (4)面AB1C與面A1DC1的距離為_(kāi)___________;

  (5)點(diǎn)B到直線A1C1的距離為_(kāi)____________。

  62.你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?

  正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

  正棱錐的計(jì)算集中在四個(gè)直角三角形中:

  它們各包含哪些元素?

  63.球有哪些性質(zhì)?

  (2)球面上兩點(diǎn)的距離是經(jīng)過(guò)這兩點(diǎn)的大圓的劣弧長(zhǎng)。為此,要找球心角!

  (3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。

  (5)球內(nèi)接長(zhǎng)方體的對(duì)角線是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。

  積為()

  答案:A

  64.熟記下列公式了嗎?

  (2)直線方程:

  65.如何判斷兩直線平行、垂直?

  66.怎樣判斷直線l與圓C的位置關(guān)系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時(shí),注意利用圓的“垂徑定理”。

  67.怎樣判斷直線與圓錐曲線的位置?

  68.分清圓錐曲線的定義

  70.在圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程,要注意其二次項(xiàng)系數(shù)是否為零?△≥0的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱(chēng)存在性問(wèn)題都在△≥0下進(jìn)行。)

  71.會(huì)用定義求圓錐曲線的焦半徑嗎?

  如:

  通徑是拋物線的所有焦點(diǎn)弦中最短者;以焦點(diǎn)弦為直徑的圓與準(zhǔn)線相切。

  72.有關(guān)中點(diǎn)弦問(wèn)題可考慮用“代點(diǎn)法”。

  答案:

  73.如何求解“對(duì)稱(chēng)”問(wèn)題?

  (1)證明曲線C:F(x,y)=0關(guān)于點(diǎn)M(a,b)成中心對(duì)稱(chēng),設(shè)A(x,y)為曲線C上任意一點(diǎn),設(shè)A'(x',y')為A關(guān)于點(diǎn)M的對(duì)稱(chēng)點(diǎn)。

  75.求軌跡方程的常用方法有哪些?注意討論范圍。

  (直接法、定義法、轉(zhuǎn)移法、參數(shù)法)

  76.對(duì)線性規(guī)劃問(wèn)題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。


高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦相關(guān)文章:

1.高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全

2.高三數(shù)學(xué)知識(shí)點(diǎn)梳理

3.高三數(shù)學(xué)各階段復(fù)習(xí)要點(diǎn)總結(jié)及高分技巧分享

4.高考數(shù)學(xué)知識(shí)點(diǎn)歸納整理

5.2017年高考數(shù)學(xué)考點(diǎn)整理

6.高三數(shù)學(xué)易錯(cuò)點(diǎn)集錦

7.高三文科數(shù)學(xué)知識(shí)考點(diǎn)解析大全

8.高中文科數(shù)學(xué)知識(shí)要點(diǎn)解析集錦

9.高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法

10.高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

488229